Cancer disease has a complicated pathophysiology and is one of the major causes of death and morbidity. Classical cancer therapies include chemotherapy, radiation therapy, and immunotherapy. A typical treatment is chemotherapy, which delivers cytotoxic medications to patients to suppress the uncontrolled growth of cancerous cells. Conventional oral medication has a number of drawbacks, including a lack of selectivity, cytotoxicity, and multi-drug resistance, all of which offer significant obstacles to effective cancer treatment. Multidrug resistance (MDR) remains a major challenge for effective cancer chemotherapeutic interventions. The advent of nanotechnology approach has developed the field of tumor diagnosis and treatment. Cancer nanotechnology enables direct access to tumor cells, resulting in enhanced drug localization and cellular uptake. Since the early 1990’s, several solid lipid nanoparticle (SLN) or SLN-based systems for the delivery of cytotoxic drugs have been manufactured and tested with success. High shear homogenization, microemulsion-based SLN, Supercritical fluid technology, spray drying, and solvent emulsification/evaporation methods can all be used to successfully formulate SLN.There is great potential to enhance cancer chemotherapy by incorporating it into a solid lipid nanoparticle (SLN) drug delivery system. Improving tumor diffusivity, improvement of body distribution, and inhibiting MDR are the main attributes. This type of review article discusses advantages and disadvantages of SLNs, their production techniques, and their potential usage in the treatment of various cancers.
The study is based on the selective binding ability of the drug compound procaine (PRO) on a surface imprinted with nylon 6 (N6) polymer. Physical characterization of the polymer template was performed by X-ray diffraction and DSC thermal analysis. The imprinted polymer showed a high adsorption capacity to trap procaine (237 µg/g) and excellent recognition ability with an imprinted factor equal to 3.2. The method was applied to an extraction column simulating a solid-phase extraction to separate the drug compound in the presence of tinoxicam and nucleosimide separately and in a mixture of them with a recovery rate more than the presence of tinoxicam and nucleosimide separately and in a mixture of them with a recovery rate of more t
... Show MoreThirty local fungal isolates according to Aspergillus niger were screened for Inulinase production on synthetic solid medium depending on inulin hydrolysis appear as clear zone around fungal colony. Semi-quantitative screening was performed to select the most efficient isolate for inulinase production. the most efficient isolate was AN20. The optimum condition for enzyme production from A. niger isolate was determined by busing a medium composed of sugar cane moisten with corn steep liquor 5;5 (v/w) at initial pH 5.0 for 96 hours at 30 0C . Enzyme productivity was tested for each of the yeast Kluyveromyces marxianus, the fungus A. niger AN20 and for a mixed culture of A. niger and K. marxianus. The productivity of A. niger gave the highest
... Show MoreAfamin, which is a human plasma glycoprotein, a putative multifunctional transporter of hydrophobic molecules and a marker for metabolic syndrome. Afamin concentration have been proposed to have a significant role as a predictor of metabolic disorders. Since NAFLD is associated with metabolic risk factors, e.g., dyslipidemia, insulin resistance and visceral obesity, it is considered as the hepatic manifestation of the metabolic syndrome. The objective of this study is to determine Afamin levels in hypothyroid patients with and without fatty liver disease and compare the results with controls. Also to study the relationship of Afamin level with the Anthropometric and Clinical Features (Age, Gender, BMI and Duration of Hypothyroidism) , Serum
... Show MoreIn the recent decade, injection of nanoparticles (NPs) into underground formation as liquid nanodispersions has been suggested as a smart alternative for conventional methods in tertiary oil recovery projects from mature oil reservoirs. Such reservoirs, however, are strong candidates for carbon geo-sequestration (CGS) projects, and the presence of nanoparticles (NPs) after nanofluid-flooding can add more complexity to carbon geo-storage projects. Despite studies investigating CO2 injection and nanofluid-flooding for EOR projects, no information was reported about the potential synergistic effects of CO2 and NPs on enhanced oil recovery (EOR) and CGS concerning the interfacial tension (γ) of CO2-oil system. This study thus extensively inves
... Show MoreIn the present study, nanoporous material type MCM-41 was prepared by the sol-gel technique and was used as a carrier for prednisolone (PRD) drug delivery. The structural properties of mesoporous were fully characterized by X-ray diffraction (XRD), N2 adsorption /desorption and Fourier-transform infrared (FTIR). The mass transfer in term of adsorption process (loading) and desorption process (releasing) properties were investigated. The maximum drug loading efficiency was equal to 38% and 47.5% at different concentrations. The PRD released was prudently studied in water media of pH 6.8 simulated body fluid (SBF) in according to "United State Pharmacopeia (USP38)". The results proved that the release of prednisolone from MCM-41
... Show MoreCurcumin (Cur) possesses remarkable pharmacological properties, including cardioprotective, neuroprotective, antimicrobial, and anticancer activities. However, the utilization of Cur in pharmaceuticals faces constraints owing to its inadequate water solubility and limited bioavailability. To overcome these hurdles, there has been notable focus on exploring innovative formulations, with nanobiotechnology emerging as a promising avenue to enhance the therapeutic effectiveness of these complex compounds. We report a novel safe, effective method for improving the incorporation of anticancer curcumin to induce apoptosis by reducing the expression levels of miR20a and miR21. The established