Cancer disease has a complicated pathophysiology and is one of the major causes of death and morbidity. Classical cancer therapies include chemotherapy, radiation therapy, and immunotherapy. A typical treatment is chemotherapy, which delivers cytotoxic medications to patients to suppress the uncontrolled growth of cancerous cells. Conventional oral medication has a number of drawbacks, including a lack of selectivity, cytotoxicity, and multi-drug resistance, all of which offer significant obstacles to effective cancer treatment. Multidrug resistance (MDR) remains a major challenge for effective cancer chemotherapeutic interventions. The advent of nanotechnology approach has developed the field of tumor diagnosis and treatment. Cancer nanotechnology enables direct access to tumor cells, resulting in enhanced drug localization and cellular uptake. Since the early 1990’s, several solid lipid nanoparticle (SLN) or SLN-based systems for the delivery of cytotoxic drugs have been manufactured and tested with success. High shear homogenization, microemulsion-based SLN, Supercritical fluid technology, spray drying, and solvent emulsification/evaporation methods can all be used to successfully formulate SLN.There is great potential to enhance cancer chemotherapy by incorporating it into a solid lipid nanoparticle (SLN) drug delivery system. Improving tumor diffusivity, improvement of body distribution, and inhibiting MDR are the main attributes. This type of review article discusses advantages and disadvantages of SLNs, their production techniques, and their potential usage in the treatment of various cancers.
current research aims to build an intellectual framework for concept of organizational forgetting, which is considered one of the most important topics in contemporary management thought, which is gain the consideration of most scholars and researchers in field of organizational behavior, which is to be a loss of intentional or unintentional knowledge of any organizational level. It turned out that just as organizations should learn and acquire knowledge, they must also forget, especially knowledge obsolete and worn out. And represented the research problem in the absence of Arab research dealing with organizational forgetting, and highlights the supporting infrastructure core, and show a close relationship with organizational le
... Show MoreA theoretical analysis of mixing in the secondary combustion chamber of ramjet is presented. Theoretical investigations were initiated to insight into the flow field of the mixing zone of the ramjet combustor and a computer program to calculate axisymmetric, reacting and inert flow was developed. The mathematical model of the mixing zone of ramjet comprises differential equations for: continuity, momentum, stagnation enthalpy, concentration, turbulence energy and its dissipation rate. The simultaneous solution of these equations by means of a finite-difference solution algorithm yields the values of the variable at all internal grid nodes.
The results showed that increasing air mass flow (0.32 to 0.64 kg/s) increases the development o
The hydroisomerization of n-decane was studied on SAPO-11 catalyst. Catalyst of 0.25wt.%Pt/SAPO-11 was prepared locally and used in the present work. The hydroconversion performed in a continuous fixed-bed laboratory reaction unit. Experiments of n-decane isomerization were performed in a temperature range of 200 to 275°C,LHSV range of 0.5-2 h-1, and hydrogen to decane mole ratio of 2.1-8.2. The results show that the n-decane conversion increases with increasing temperature and decreasing LHSV , the maximum conversion 56.77 % was achieved at temperature 275°C and LHSV of 0.5 h-1. The kinetic of n-decane isomerization was also studied and the reaction was first order. The kinetic analysis also showed that the
... Show MoreThe paper presents an overview of theoretical aspects of small radio telescope antenna parameters. The basic parameters include antenna beamwidth, antenna gain, aperture efficiency, and antenna temperature. These parameters should be carefully studied since they have vital effects on astronomical radio observations. The simulations of antenna parameters were carried out to assess the capability and the efficiency of small radio telescopes to observe a point source at a specific frequency. Two-dimensional numerical simulations of a uniform circular aperture antenna are implemented at different radii. The small diameter values are chosen to be varied between (1-10) m. This study focuses on a small radio telescope with a diameter of 3 m sin
... Show MoreIn this study, new derivatives of 3-C-spiro ring nucleoside analogues were synthesized. The structures of these derivatives were characterized by infrared spectroscopy,1 HNMR (some of them) and elemental analysis. The nucleoside derivatives were tested for inhibition of E-coli and were all found to be active.
Study of the Mechanical and Electrical Properties of Modified Unsaturated Polyester Blends
The shear strength of soil is one of the most important soil properties that should be identified before any foundation design. The presence of gypseous soil exacerbates foundation problems. In this research, an approach to forecasting shear strength parameters of gypseous soils based on basic soil properties was created using Artificial Neural Networks. Two models were built to forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as inputs to both models for they were considered to have the most significant impact on soil shear strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity index, water content, dry unit weight, and initial
... Show MoreRecently, interest in the use of projectiles in research on recycling waste materials for construction applications has grown. Using recycled materials for the construction of asphalt concrete pavement, in the meantime, has become a topic of research due to its significant benefits, such as cost savings and reduced environmental impacts. This study reports on comprehensive experimental research conducted using a typical mechanical milling waste, iron filing waste (IFW), as an alternative fine aggregate for warm mix asphalt (WMA) for pavement wearing surface applications. A type of IFW from a local machine workshop was used to replace the conventional fine aggregate, fine natural sand (FNS), at percentages of 25%, 50% 75%, and 100% b
... Show More