Objectives: Small field of view gamma detection and imaging technologies for monitoring in vivo tracer uptake are rapidly expanding and being introduced for bed-side imaging and image guided surgical procedures. The Hybrid Gamma Camera (HGC) has been developed to enhance the localization of targeted radiopharmaceuticals during surgical procedures; for example in sentinel lymph node (SLN) biopsies and for bed-side imaging in procedures such as lacrimal drainage imaging and thyroid scanning. In this study, a prototype anthropomorphic head and neck phantom has been designed, constructed, and evaluated using representative modelled medical scenarios to study the capability of the HGC to detect SLNs and image small organs. Methods: An anthropomorphic head and neck phantom has been designed to mimic the adult head and neck including some internal organs and tissues of interest, such as the thyroid gland and sentinel lymph nodes. The design of the head and neck phantom included an adjustable inner jig holding the simulated SLNs and thyroid gland. The simulated thyroid gland was designed and 3D printed taking into consideration the size and the shape of a healthy adult thyroid gland. The inner sealed space of the thyroid was filled with 15MBq of 99mTc through two upper filling valves. Sealed micro-tubes (0.2ml) have been employed to simulate SLNs containing various 99mTc activity concentrations ranging between 0.1MBq and 1MBq, and can be positioned at any desired place in the head and neck region. An active background was simulated through mixing 10MBq of 99mTc solution with the water used to fill the outer shell of the head and neck phantom. Results: The head and neck phantom was employed to simulate a situation where there are four SLNs distributed at two different vertical levels and at two depths within the neck. Contrast to noise ratio (CNR) calculations were performed for the detected SLNs at an 80mm distance between both pinhole collimators (i.e. 0.5mm and 1.0mm diameters) and the surface of the head and neck phantom with a 100s acquisition time. The recorded CNR values for the simulated SLNs are higher when the HGC was fitted with the 1.0mm diameter pinhole collimator. For instance, the recorded CNR values for the superficially simulated SLN containing 0.1MBq of 99mTc using 0.5mm and 1.0mm diameter pinhole collimators are 6.48 and 16.42, respectively (~87% difference). The anatomical context provided by the hybrid imaging aided the localization process of radioactivity accumulation in simulated SLNs. Gamma and hybrid optical images were acquired using the HGC with both available pinhole collimators for the simulated thyroid gland. The thyroid images produced varied in terms of spatial resolution and detectability. The count profiles through the middle of the simulated thyroid gland images provided by both pinhole collimators were obtained. The HGC could clearly differentiate the individual peaks of both thyroid lobes in the gamma image produced by the 0.5mm pinhole collimator. In contrast, the recorded count profile for the acquired image using the 1.0mm diameter pinhole collimator showed broader peaks for both lobes, reflecting the degradation of the spatial resolution with increasing the diameter of the pinhole collimator. Conclusion: The capability of the HGC has been evaluated utilizing a prototype anthropomorphic head and neck phantom, and the gamma and hybrid images obtained demonstrate that it is ideally suited for intraoperative SLNs detection and small organ imaging. The standardization of test phantoms and protocols for SFOV portable gamma systems will provide an opportunity to collect data across various medical centers and research groups. Moreover, it will provide a technical baseline for researchers and clinical practitioners to consider when assessing their SFOV gamma imaging systems. The anthropomorphic head and neck phantom described is cost effective, reproducible, flexible and anatomically representative.
The existing investigation explains the consequence of irradiation of violet laser on the structure properties of MawsoniteCu6Fe2SnS8 [CFTS] thin films. The film was equipped by the utilization of semi-computerized spray pyrolysis technique (SCSPT), it is the first time that this technique is used in the preparation and irradiation using a laser. when the received films were processed by continuous red laser (700 nm) with power (>1000mW) for different laser irradiation time using different number of times a laser scan (0, 6, 9, 12, 15 and 18 times) with total irradiation time (0,30,45,60,75,90 min) respectively at room temperature.. The XRD diffraction gave polycrysta
... Show More