Objectives: Small field of view gamma detection and imaging technologies for monitoring in vivo tracer uptake are rapidly expanding and being introduced for bed-side imaging and image guided surgical procedures. The Hybrid Gamma Camera (HGC) has been developed to enhance the localization of targeted radiopharmaceuticals during surgical procedures; for example in sentinel lymph node (SLN) biopsies and for bed-side imaging in procedures such as lacrimal drainage imaging and thyroid scanning. In this study, a prototype anthropomorphic head and neck phantom has been designed, constructed, and evaluated using representative modelled medical scenarios to study the capability of the HGC to detect SLNs and image small organs. Methods: An anthropomorphic head and neck phantom has been designed to mimic the adult head and neck including some internal organs and tissues of interest, such as the thyroid gland and sentinel lymph nodes. The design of the head and neck phantom included an adjustable inner jig holding the simulated SLNs and thyroid gland. The simulated thyroid gland was designed and 3D printed taking into consideration the size and the shape of a healthy adult thyroid gland. The inner sealed space of the thyroid was filled with 15MBq of 99mTc through two upper filling valves. Sealed micro-tubes (0.2ml) have been employed to simulate SLNs containing various 99mTc activity concentrations ranging between 0.1MBq and 1MBq, and can be positioned at any desired place in the head and neck region. An active background was simulated through mixing 10MBq of 99mTc solution with the water used to fill the outer shell of the head and neck phantom. Results: The head and neck phantom was employed to simulate a situation where there are four SLNs distributed at two different vertical levels and at two depths within the neck. Contrast to noise ratio (CNR) calculations were performed for the detected SLNs at an 80mm distance between both pinhole collimators (i.e. 0.5mm and 1.0mm diameters) and the surface of the head and neck phantom with a 100s acquisition time. The recorded CNR values for the simulated SLNs are higher when the HGC was fitted with the 1.0mm diameter pinhole collimator. For instance, the recorded CNR values for the superficially simulated SLN containing 0.1MBq of 99mTc using 0.5mm and 1.0mm diameter pinhole collimators are 6.48 and 16.42, respectively (~87% difference). The anatomical context provided by the hybrid imaging aided the localization process of radioactivity accumulation in simulated SLNs. Gamma and hybrid optical images were acquired using the HGC with both available pinhole collimators for the simulated thyroid gland. The thyroid images produced varied in terms of spatial resolution and detectability. The count profiles through the middle of the simulated thyroid gland images provided by both pinhole collimators were obtained. The HGC could clearly differentiate the individual peaks of both thyroid lobes in the gamma image produced by the 0.5mm pinhole collimator. In contrast, the recorded count profile for the acquired image using the 1.0mm diameter pinhole collimator showed broader peaks for both lobes, reflecting the degradation of the spatial resolution with increasing the diameter of the pinhole collimator. Conclusion: The capability of the HGC has been evaluated utilizing a prototype anthropomorphic head and neck phantom, and the gamma and hybrid images obtained demonstrate that it is ideally suited for intraoperative SLNs detection and small organ imaging. The standardization of test phantoms and protocols for SFOV portable gamma systems will provide an opportunity to collect data across various medical centers and research groups. Moreover, it will provide a technical baseline for researchers and clinical practitioners to consider when assessing their SFOV gamma imaging systems. The anthropomorphic head and neck phantom described is cost effective, reproducible, flexible and anatomically representative.
Objectives: The study aims at identifying the nurses’ knowledge about peritoneal dialysis complications, to
construct an education program for nurses in peritoneal dialysis units, to determine the effectiveness of the
education program upon the nurses' knowledge about complications of peritoneal dialysis, and to identify the
relationship between the nurses’ knowledge and their demographic characteristics of level of education and
years of experience.
Methodology: A quasi-experimentai study was carried out at the peritoneal dialysis units of Baghdad teaching
hospitals, from April 2004 to April 2006.
٨ purposive sample of (50) nurse was selected from Baghdad teaching hospitals. These nurses working at the
perit
The purpose of this study to synthesize and characterize silver nanoparticles using phenolic compounds obtained from Camellia sinensis, to test the antibacterial properties of biosynthesized nanoparticles on the formation of biofilms in multidrug-resistant Pseudomonas aeruginosa. Ten isolates of P. aeruginosa were obtained from the Genetic Engineering and Biotechnology Institute laboratories of the University of Baghdad. By using the VITEK-2 system and culturing the isolates on cetrimide agar, the diagnosis was confirmed. Camellia sinensis silver nanoparticles (CAgNPs) were created using an extract of the plant's aqueous and methanolic leaves. Based on the results of the nanoparticle synthesis, spherical nanoparticles that may be single or
... Show MoreThe aim of this paper is introducing the concept of (ɱ,ɳ) strong full stability B-Algebra-module related to an ideal. Some properties of (ɱ,ɳ)- strong full stability B-Algebra-module related to an ideal have been studied and another characterizations have been given. The relationship of (ɱ,ɳ) strong full stability B-Algebra-module related to an ideal that states, a B- -module Ӽ is (ɱ,ɳ)- strong full stability B-Algebra-module related to an ideal , if and only if for any two ɱ-element sub-sets and of Ӽɳ, if , for each j = 1, …, ɱ, i = 1,…, ɳ and implies Ạɳ( ) Ạɳ( have been proved..
The simulation of passively Q-switching is four non – linear first order differential equations. The optimization of passively Q-switching simulation was carried out using the constrained Rosenbrock technique. The maximization option in this technique was utilized to the fourth equation as an objective function; the parameters, γa, γc and β as were dealt with as decision variables. A FORTRAN program was written to determine the optimum values of the decision variables through the simulation of the four coupled equations, for ruby laser Q–switched by Dy +2: CaF2.For different Dy +2:CaF2 molecules number, the values of decision variables was predicted using our written program. The relaxation time of Dy +2: CaF2, used with ruby was
... Show MoreThis study investigated the bioethanol production from green algae Chlorella vulgaris depending on its carbohydrate-enriched biomass. Four different phosphorous concentrations were employed to stimulate bioethanol production from Chlorella vulgaris. The impact of various phosphorous values on Chlorella vulgaris growth rate as well as primary product (carbohydrate) were evaluated. High performance liquid chromatography was utilized in this work. The stationary phase was identified as day 14, 12, 10 and 6 in treatments 6, 4, 2 and g/L, respectively. The findings suggest that the treatment without phosphorous addition had the highest record of carbohydrate content (22.64% dry weight) as well as the highest bioethanol yield (20.66% dry weight).
... Show MoreThe study aims to predict Total Dissolved Solids (TDS) as a water quality indicator parameter at spatial and temporal distribution of the Tigris River, Iraq by using Artificial Neural Network (ANN) model. This study was conducted on this river between Mosul and Amarah in Iraq on five positions stretching along the river for the period from 2001to 2011. In the ANNs model calibration, a computer program of multiple linear regressions is used to obtain a set of coefficient for a linear model. The input parameters of the ANNs model were the discharge of the Tigris River, the year, the month and the distance of the sampling stations from upstream of the river. The sensitivity analysis indicated that the distance and discharge
... Show MoreAbstract: Coronavirus disease 2019 (COVID-19) is an infectious disease with severe acute respiratory syndrome and first recognized in Wuhan, China, and it has since spread to the world, resulting in the coronavirus pandemic to 2020. The present study aimed to evaluate Molecular study of some types of vaginal fungi isolated from recovered women from Covid-19 in Baghdad governorate. The study was conducted on 213 samples collected between December 2021 and March 2022, where the number of positive samples reached 188 with percentage 88.26%, while the number of negative samples reached 25 with percentage 11.73% by taking vaginal swabs from various female patients in Al- Kadhimiya Teaching Hospital. Three of Candida spp. were isolated: Candida a
... Show MoreIn this paper, the researcher suggested using the Genetic algorithm method to estimate the parameters of the Wiener degradation process, where it is based on the Wiener process in order to estimate the reliability of high-efficiency products, due to the difficulty of estimating the reliability of them using traditional techniques that depend only on the failure times of products. Monte Carlo simulation has been applied for the purpose of proving the efficiency of the proposed method in estimating parameters; it was compared with the method of the maximum likelihood estimation. The results were that the Genetic algorithm method is the best based on the AMSE comparison criterion, then the reliab
... Show More