Objectives: Small field of view gamma detection and imaging technologies for monitoring in vivo tracer uptake are rapidly expanding and being introduced for bed-side imaging and image guided surgical procedures. The Hybrid Gamma Camera (HGC) has been developed to enhance the localization of targeted radiopharmaceuticals during surgical procedures; for example in sentinel lymph node (SLN) biopsies and for bed-side imaging in procedures such as lacrimal drainage imaging and thyroid scanning. In this study, a prototype anthropomorphic head and neck phantom has been designed, constructed, and evaluated using representative modelled medical scenarios to study the capability of the HGC to detect SLNs and image small organs. Methods: An anthropomorphic head and neck phantom has been designed to mimic the adult head and neck including some internal organs and tissues of interest, such as the thyroid gland and sentinel lymph nodes. The design of the head and neck phantom included an adjustable inner jig holding the simulated SLNs and thyroid gland. The simulated thyroid gland was designed and 3D printed taking into consideration the size and the shape of a healthy adult thyroid gland. The inner sealed space of the thyroid was filled with 15MBq of 99mTc through two upper filling valves. Sealed micro-tubes (0.2ml) have been employed to simulate SLNs containing various 99mTc activity concentrations ranging between 0.1MBq and 1MBq, and can be positioned at any desired place in the head and neck region. An active background was simulated through mixing 10MBq of 99mTc solution with the water used to fill the outer shell of the head and neck phantom. Results: The head and neck phantom was employed to simulate a situation where there are four SLNs distributed at two different vertical levels and at two depths within the neck. Contrast to noise ratio (CNR) calculations were performed for the detected SLNs at an 80mm distance between both pinhole collimators (i.e. 0.5mm and 1.0mm diameters) and the surface of the head and neck phantom with a 100s acquisition time. The recorded CNR values for the simulated SLNs are higher when the HGC was fitted with the 1.0mm diameter pinhole collimator. For instance, the recorded CNR values for the superficially simulated SLN containing 0.1MBq of 99mTc using 0.5mm and 1.0mm diameter pinhole collimators are 6.48 and 16.42, respectively (~87% difference). The anatomical context provided by the hybrid imaging aided the localization process of radioactivity accumulation in simulated SLNs. Gamma and hybrid optical images were acquired using the HGC with both available pinhole collimators for the simulated thyroid gland. The thyroid images produced varied in terms of spatial resolution and detectability. The count profiles through the middle of the simulated thyroid gland images provided by both pinhole collimators were obtained. The HGC could clearly differentiate the individual peaks of both thyroid lobes in the gamma image produced by the 0.5mm pinhole collimator. In contrast, the recorded count profile for the acquired image using the 1.0mm diameter pinhole collimator showed broader peaks for both lobes, reflecting the degradation of the spatial resolution with increasing the diameter of the pinhole collimator. Conclusion: The capability of the HGC has been evaluated utilizing a prototype anthropomorphic head and neck phantom, and the gamma and hybrid images obtained demonstrate that it is ideally suited for intraoperative SLNs detection and small organ imaging. The standardization of test phantoms and protocols for SFOV portable gamma systems will provide an opportunity to collect data across various medical centers and research groups. Moreover, it will provide a technical baseline for researchers and clinical practitioners to consider when assessing their SFOV gamma imaging systems. The anthropomorphic head and neck phantom described is cost effective, reproducible, flexible and anatomically representative.
The title takes its realistic connotations with its symbols, slogans and historical extensions in Iraq, also, the repercussions of the organic crisis that afflicted it for almost half a century, especially after the abortion of the July 14 Revolution and the spread of the culture of weapons, violence and death that we are living in Iraq nowadays.
The topic is suitable for critical analytical studies carried out by specialists in scientific and academic research centers and cultural institutions because they have an important feasibility at the strategic cultural level in Iraq, the Middle East and the world.
Research in Iraq has fallen to the extreme and is no longer effective, to the extent that it represents a severe cri
... Show MoreThe goal of the research is to develop a sustainable rating system for roadway projects in Iraq for all of the life cycle stages of the projects which are (planning, design, construction and operation and maintenance). This paper investigates the criteria and its weightings of the suggested roadway rating system depending on sustainable planning activities. The methodology started in suggesting a group of sustainable criteria for planning stage and then suggesting weights from (1-5) points for each one of it. After that data were collected by using a closed questionnaire directed to the roadway experts group in order to verify the criteria weightings based on the relative importance of the roadway related impacts
... Show MoreElectrical distribution system loads are permanently not fixed and alter in value and nature with time. Therefore, accurate consumer load data and models are required for performing system planning, system operation, and analysis studies. Moreover, realistic consumer load data are vital for load management, services, and billing purposes. In this work, a realistic aggregate electric load model is developed and proposed for a sample operative substation in Baghdad distribution network. The model involves aggregation of hundreds of thousands of individual components devices such as motors, appliances, and lighting fixtures. Sana’a substation in Al-kadhimiya area supplies mainly residential grade loads. Measurement-based
... Show MoreDensity Functional Theory (DFT) method of the type (B3LYP) and a Gaussian basis set (6-311G) were applied for calculating the vibration frequencies and absorption intensities for normal coordinates (3N-6) at the equilibrium geometry of the Di and Tetra-rings layer (6, 0) zigzag single wall carbon nanotubes (SWCNTs) by using Gaussian-09 program. Both were found to have the same symmetry of D6d point group with C--C bond alternation in all tube rings (for axial bonds, which are the vertical C--Ca bonds in rings layer and for circumferential bonds C—Cc in the outer and mid rings bonds). Assignments of the modes of vibration IR active and inactive vibration frequ
... Show MoreSultan Said bin Sultan bin Ahmed bin Said Al-Busaidi (1223-1273 AH / 1806-1856 AD) was able to rule Oman and Zanzibar in a unified Arab-African state during his reign. However, it was separated for several reasons. Thus, the study aims to clarify the efforts made by Sultan Said for annexing Zanzibar to Oman, establishing the Arab-African Sultanate, and shedding light on the role played by Britain in dividing the Arab-African Sultanate and separating Zanzibar from the Omani rule in (1275 AH-1861 AD). The study has adopted the historical descriptive analytical approach. The study has reached several conclusions, such as: The economic motivators were the most important factors that pushed Sultan Said to move his capital from Muscat to
... Show MoreStereolithography (SLA) has become an essential photocuring 3D printing process for producing parts of complex shapes from photosensitive resin exposed to UV light. The selection of the best printing parameters for good accuracy and surface quality can be further complicated by the geometric complexity of the models. This work introduces multiobjective optimization of SLA printing of 3D dental bridges based on simple CAD objects. The effect of the best combination of a low-cost resin 3D printer’s machine parameter settings, namely normal exposure time, bottom exposure time and bottom layers for less dimensional deviation and surface roughness, was studied. A multiobjective optimization method was utilized, combining the Taguchi me
... Show MoreThis investigation integrates experimental and numerical approaches to study a novel solar air heater aimed at achieving an efficient design for a solar collector suitable for drying applications under the meteorological conditions of Iraq. The importance of this investigation stems from the lack of optimal exploitation of solar energy reaching the solar collector, primarily attributable to elevated thermal losses despite numerous designs employed in such solar systems. Consequently, enhancing the thermal performance of solar collectors, particularly those employed in crop drying applications, stands as a crucial focal point for researchers within this domain. Two identical double-pass solar air heaters were designed and constructed for
... Show MoreOne of the main parts in hydraulic system is directional control valve, which is needed in order to operate hydraulic actuator. Practically, a conventional directional control valve has complex construction and moving parts, such as spool. Alternatively, a proposed Magneto-rheological (MR) directional control valve can offer a better solution without any moving parts by means of MR fluid. MR fluid consists of stable suspension of micro-sized magnetic particles dispersed in carrier medium like hydrocarbon oil. The main objectives of this present research are to design a MR directional control valve using MR fluid, to analyse its magnetic circuit using FEMM software, and to study and simulate the performance of this valve. In this research, a
... Show More