Background. Bone healing is a complex and dynamic process that represents a well-orchestrated series of biological events of cellular recruitment, proliferation, and differentiation. The use of medicinal plants in bone healing has attracted increasing interest because of their lower side effects. Punica granatum seed oil (PSO) contains high levels of phenolic compounds, promotes osteoblast function, and plays an important role in bone remodeling. A gelatin sponge (Spongostan) is a hemostatic agent that is extensively applied as scaffolds in engineering and as drug carriers in the medical field. This study aimed to evaluate the effectiveness of PSO for bone healing enhancement. Twenty adult male New Zealand rabbits, weighing an average of 1.5–2 kg, were used in this study. Three intrabony holes were created in the tibiae of each animal, which were filled with a gelatin sponge (GS group) and combined gelatin sponge and PSO (GS/PSO group). Holes without material application were designated as the control group (C group). The animals were sacrificed at the healing duration (2–4 weeks) to prepare bone specimens for histological and histomorphometric analyses. Results. Histological findings indicated that the bone defects in the GS/PSO group showed more bone formation, mineralization, and maturation compared with the C and GS groups. Multiple group differences for bone cells showed a highly significant difference among all groups in the 2- and 4-week healing periods except for the C/GS and GS/GS/PSO groups at 4-weeks duration. Furthermore, highly significant results were obtained between both durations regarding the trabecular area, trabecular number, and bone marrow area. Conclusion. The study revealed that the combined application of GS and PSO was more effective in enhancing bone regeneration and accelerating bone healing compared with the other groups.
Chitosan (CH) / Poly (1-vinylpyrrolidone-co-vinyl acetate) (PVP-co-VAc) blend (1:1) and nanocomposites reinforced with CaCO3 nanoparticles were prepared by solution casting method. FTIR analysis, tensile strength, Elongation, Young modulus, Thermal conductivity, water absorption and Antibacterial properties were studied for blend and nanocomposites. The tensile results show that the tensile strength and Young’s modulus of the nanocomposites were enhanced compared with polymer blend [CH/(PVP-co-VAc)] film. The mechanical properties of the polymer blend were improved by the addition of CaCO3 with significant increases in Young’s modulus (from 1787 MPa to ~7238 MPa) and tensile strength (from 47.87 MPa to 79.75 MPa). Strong interfacial
... Show MoreThe aqueous extract of Citrullius colocynthis dried seeds (160 ?g/ml) was in vitro evaluated for its effect on phagocytic index (PI) and lymphocyte transformation index (LTI) of blood cells obtained from 30 apparently healthy blood donors (15 males and 15 females). The PI was further in vivo evaluated in cells of peritone, spleen and liver of mice treated with the extract at a dose of 0.64 mg/kg. The results revealed that in in vitro study, phagocytic cells treated with the extract showed a significant increased percentage as compared with untreated cells (60.0 vs. 44.1%). Phagocytes obtained from peritone (44.1 vs. 30.0%) and spleen (45.6 vs. 39.6 %) of treated and untreated mice behaved in a similar manner, while liver phagocytes showed n
... Show MoreAdditive aluminum powder to the polystyrene to prepare the composites Polystyrene– Aluminum.The samples were prepared by using mechanical compressed method at low pressure and a temperature 120°C. Measurements of absorbance and reflectance spectra were carried out by UV-Visible spectrophotometer , the effect of additive aluminum on the optical band gap Eop and optical constants ( refractive index n, extinction coefficient k ,dielectric constant ε and optical conductivity σop) were studied for the prepared composites . Results showed a decrease in the Eop with increasing perc
... Show MoreA hand lay-up method was used to prepare Epoxy/ metal composites. Epoxy resin (EP) was used as a matrix with metal particles (Al, Cu, and Fe) as fillers.
The preparation method includes preparing square panels of composites with different weight percentage of fillers (10, 20, 30, 40, and 50%). Standard specimens (88mm in diameter) for thermal conductivity tests were prepared to measure thermal conductivity kexp.The result of experimental thermal conductivity kexp, for EP/metal composites show that, kexp increase with increasing weight percentage, For EP/ Al and EP/Cu composites, and it have have maximum values of 0.33 and 0.35 W/m.K, respectively. While kexp for EP/ Fe composite show slight increase with maximum value of 0.186 W/m.K.