Background. Bone healing is a complex and dynamic process that represents a well-orchestrated series of biological events of cellular recruitment, proliferation, and differentiation. The use of medicinal plants in bone healing has attracted increasing interest because of their lower side effects. Punica granatum seed oil (PSO) contains high levels of phenolic compounds, promotes osteoblast function, and plays an important role in bone remodeling. A gelatin sponge (Spongostan) is a hemostatic agent that is extensively applied as scaffolds in engineering and as drug carriers in the medical field. This study aimed to evaluate the effectiveness of PSO for bone healing enhancement. Twenty adult male New Zealand rabbits, weighing an average of 1.5–2 kg, were used in this study. Three intrabony holes were created in the tibiae of each animal, which were filled with a gelatin sponge (GS group) and combined gelatin sponge and PSO (GS/PSO group). Holes without material application were designated as the control group (C group). The animals were sacrificed at the healing duration (2–4 weeks) to prepare bone specimens for histological and histomorphometric analyses. Results. Histological findings indicated that the bone defects in the GS/PSO group showed more bone formation, mineralization, and maturation compared with the C and GS groups. Multiple group differences for bone cells showed a highly significant difference among all groups in the 2- and 4-week healing periods except for the C/GS and GS/GS/PSO groups at 4-weeks duration. Furthermore, highly significant results were obtained between both durations regarding the trabecular area, trabecular number, and bone marrow area. Conclusion. The study revealed that the combined application of GS and PSO was more effective in enhancing bone regeneration and accelerating bone healing compared with the other groups.
Vol. 6, Issue 1 (2025)
In this paper, the error distribution function is estimated for the single index model by the empirical distribution function and the kernel distribution function. Refined minimum average variance estimation (RMAVE) method is used for estimating single index model. We use simulation experiments to compare the two estimation methods for error distribution function with different sample sizes, the results show that the kernel distribution function is better than the empirical distribution function.
This study aims to enhance the RC5 algorithm to improve encryption and decryption speeds in devices with limited power and memory resources. These resource-constrained applications, which range in size from wearables and smart cards to microscopic sensors, frequently function in settings where traditional cryptographic techniques because of their high computational overhead and memory requirements are impracticable. The Enhanced RC5 (ERC5) algorithm integrates the PKCS#7 padding method to effectively adapt to various data sizes. Empirical investigation reveals significant improvements in encryption speed with ERC5, ranging from 50.90% to 64.18% for audio files and 46.97% to 56.84% for image files, depending on file size. A substanti
... Show MoreDetermining the face of wearing a mask from not wearing a mask from visual data such as video and still, images have been a fascinating research topic in recent decades due to the spread of the Corona pandemic, which has changed the features of the entire world and forced people to wear a mask as a way to prevent the pandemic that has calmed the entire world, and it has played an important role. Intelligent development based on artificial intelligence and computers has a very important role in the issue of safety from the pandemic, as the Topic of face recognition and identifying people who wear the mask or not in the introduction and deep education was the most prominent in this topic. Using deep learning techniques and the YOLO (”You on
... Show MoreCuO-ZnO-Al2O3 catalyst was prepared in the ratios of 20:30:50 respectively, using the coprecipitation method of Cu, Zn and Al carbonates from their nitrate solutions dissolved in distilled water by adding sodium bicarbonate as precipitant.The catalyst was identified by XRD and quantitatively analysis to determine the percentages of its components using flame atomic absorption technique. Also the surface area was measured by BET method. The activity of this prepared catalyst was examined through the oxidation of ethanol to acetaldehyde which was evaluated by gas chromatography.
RNA Sequencing (RNA-Seq) is the sequencing and analysis of transcriptomes. The main purpose of RNA-Seq analysis is to find out the presence and quantity of RNA in an experimental sample under a specific condition. Essentially, RNA raw sequence data was massive. It can be as big as hundreds of Gigabytes (GB). This massive data always makes the processing time become longer and take several days. A multicore processor can speed up a program by separating the tasks and running the tasks’ errands concurrently. Hence, a multicore processor will be a suitable choice to overcome this problem. Therefore, this study aims to use an Intel multicore processor to improve the RNA-Seq speed and analyze RNA-Seq analysis's performance with a multiproce
... Show MoreIn this paper, we introduce the concepts of Large-lifting and Large-supplemented modules as a generalization of lifting and supplemented modules. We also give some results and properties of this new kind of modules.
Understanding the compatibility between spider silk and conducting materials is essential to advance the use of spider silk in electronic applications. Spider silk is tough, but becomes soft when exposed to water. Here we report a strong affinity of amine-functionalised multi-walled carbon nanotubes for spider silk, with coating assisted by a water and mechanical shear method. The nanotubes adhere uniformly and bond to the silk fibre surface to produce tough, custom-shaped, flexible and electrically conducting fibres after drying and contraction. The conductivity of coated silk fibres is reversibly sensitive to strain and humidity, leading to proof-of-concept sensor and actuator demonstrations.
Emotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In
... Show More