Background. Bone healing is a complex and dynamic process that represents a well-orchestrated series of biological events of cellular recruitment, proliferation, and differentiation. The use of medicinal plants in bone healing has attracted increasing interest because of their lower side effects. Punica granatum seed oil (PSO) contains high levels of phenolic compounds, promotes osteoblast function, and plays an important role in bone remodeling. A gelatin sponge (Spongostan) is a hemostatic agent that is extensively applied as scaffolds in engineering and as drug carriers in the medical field. This study aimed to evaluate the effectiveness of PSO for bone healing enhancement. Twenty adult male New Zealand rabbits, weighing an average of 1.5–2 kg, were used in this study. Three intrabony holes were created in the tibiae of each animal, which were filled with a gelatin sponge (GS group) and combined gelatin sponge and PSO (GS/PSO group). Holes without material application were designated as the control group (C group). The animals were sacrificed at the healing duration (2–4 weeks) to prepare bone specimens for histological and histomorphometric analyses. Results. Histological findings indicated that the bone defects in the GS/PSO group showed more bone formation, mineralization, and maturation compared with the C and GS groups. Multiple group differences for bone cells showed a highly significant difference among all groups in the 2- and 4-week healing periods except for the C/GS and GS/GS/PSO groups at 4-weeks duration. Furthermore, highly significant results were obtained between both durations regarding the trabecular area, trabecular number, and bone marrow area. Conclusion. The study revealed that the combined application of GS and PSO was more effective in enhancing bone regeneration and accelerating bone healing compared with the other groups.
This research aims to study and evaluate the reality of the Iraqi banks in terms of how they cope with the risks of the banking business, specifically banking operational risks, and to develop a model integrated to define, identify, measure and mitigate the impact of these risks on according to the Basel Committee requirements II about the dangers of Alchgal.uchir major search to the presence of weak results in the Iraqi banks in understanding and defining and measuring operational risks and not hedged properly, which avoids those banks operating losses as well as the results show there is a shortage in the equation of capital adequacy applied by the Iraqi banks because of non-observance of the minimum capital required to counter the ris
... Show MoreIn this paper, Nordhaus-Gaddum type relations on open support independence number of some derived graphs of path related graphs under addition and multiplication are studied.
In this paper, a miniaturized 2 × 2 electro-optic plasmonic Mach– Zehnder switch (MZS) based on metal–polymer–silicon hybrid waveguide is presented. Adiabatic tapers are designed to couple the light between the plasmonic phase shifter, implemented in each of the MZS arms, and the 3-dB input/output directional couplers. For 6 µm-long hybrid plasmonic waveguide supported by JRD1 polymer (r33= 390 pm/V), a π-phase shift voltage of 2 V is obtained. The switch is designed for 1550 nm operation wavelength using COMSOL software and characterizes by 2.3 dB insertion loss, 9.9 fJ/bit power consumption, and 640 GHz operation bandwidth
Polarization is an important property of light, which refers to the direction of electric field oscillations. Polarization modulation plays an essential role for polarization encoding quantum key distribution (QKD). Polarization is used to encode photons in the QKD systems. In this work, visible-range polarizers with optimal dimensions based on resonance grating waveguides have been numerically designed and investigated using the COMSOL Multiphysics Software. Two structures have been designed, namely a singlelayer metasurface grating (SLMG) polarizer and an interlayer metasurface grating (ILMG) polarizer. Both structures have demonstrated high extinction ratios, ~1.8·103 and 8.68·104 , and the bandwidths equal to 45 and 55 nm for th
... Show MoreIn this paper, a cognitive system based on a nonlinear neural controller and intelligent algorithm that will guide an autonomous mobile robot during continuous path-tracking and navigate over solid obstacles with avoidance was proposed. The goal of the proposed structure is to plan and track the reference path equation for the autonomous mobile robot in the mining environment to avoid the obstacles and reach to the target position by using intelligent optimization algorithms. Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) Algorithms are used to finding the solutions of the mobile robot navigation problems in the mine by searching the optimal paths and finding the reference path equation of the optimal
... Show MoreThe paper present design of a control structure that enables integration of a Kinematic neural controller for trajectory tracking of a nonholonomic differential two wheeled mobile robot, then proposes a Kinematic neural controller to direct a National Instrument mobile robot (NI Mobile Robot). The controller is to make the actual velocity of the wheeled mobile robot close the required velocity by guarantees that the trajectory tracking mean squire error converges at minimum tracking error. The proposed tracking control system consists of two layers; The first layer is a multi-layer perceptron neural network system that controls the mobile robot to track the required path , The second layer is an optimization layer ,which is impleme
... Show More