Preferred Language
Articles
/
vRZFeocBVTCNdQwCxFOF
Improvement of the Accuracy of the Perturbed Orbital Elements for LEO Satellite by Improving 4th Order Runge–Kutta’s Method
...Show More Authors

Background/objectives: To study the motion equation under all perturbations effect for Low Earth Orbit (LEO) satellite. Predicting a satellite’s orbit is an important part of mission exploration. Methodology: Using 4th order Runge–Kutta’s method this equation was integrated numerically. In this study, the accurate perturbed value of orbital elements was calculated by using sub-steps number m during one revolution, also different step numbers nnn during 400 revolutions. The predication algorithm was applied and orbital elements changing were analyzed. The satellite in LEO influences by drag more than other perturbations regardless nnn through semi-major axis and eccentricity reducing. Findings and novelty/improvement: The results demonstrated that when m for Runge–Kutta’s method is large; the perturbed value for orbital element considers more acceptable. Furthermore, as nnn increases the step will reduce.

Crossref
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
Mean Latin Hypercube Runge-Kutta Method to Solve the Influenza Model
...Show More Authors

     In this study, we propose a suitable solution for a non-linear system of ordinary differential equations (ODE) of the first order with the initial value problems (IVP) that contains multi variables and multi-parameters with missing real data. To solve the mentioned system, a new modified numerical simulation method is created for the first time which is called Mean Latin Hypercube Runge-Kutta (MLHRK). This method can be obtained by combining the Runge-Kutta (RK) method with the statistical simulation procedure which is the Latin Hypercube Sampling (LHS) method. The present work is applied to the influenza epidemic model in Australia in 1919  for a previous study. The comparison between the numerical and numerical simulation res

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Thu Dec 02 2021
Journal Name
Iraqi Journal Of Science
Approximate Solution for advection dispersion equation of time Fractional order by using the Chebyshev wavelets-Galerkin Method
...Show More Authors

The aim of this paper is adopted to give an approximate solution for advection dispersion equation of time fractional order derivative by using the Chebyshev wavelets-Galerkin Method . The Chebyshev wavelet and Galerkin method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are described based on the Caputo sense. Illustrative examples are included to demonstrate the validity and applicability of the proposed technique.

View Publication Preview PDF
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Runge-kutta Numerical Method for Solving Nonlinear Influenza Model
...Show More Authors
Abstract<p>The main object of this study is to solve a system of nonlinear ordinary differential equations (ODE) of the first order governing the epidemic model using numerical methods. The application under study is a mathematical epidemic model which is the influenza model at Australia in 1919. Runge-kutta methods of order 4 and of order 45 for solving this initial value problem(IVP) problem have been used. Finally, the results obtained have been discussed tabularly and graphically.</p>
View Publication
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Sun Jun 04 2017
Journal Name
Baghdad Science Journal
Improvement of the technique for the solution method of Gauss Seidel
...Show More Authors

In this paper, a new approach was suggested to the method of Gauss Seidel through the controlling of equations installation before the beginning of the method in the traditional way. New structure of equations occur after the diagnosis of the variable that causes the fluctuation and the slow extract of the results, then eradicating this variable. This procedure leads to a higher accuracy and less number of steps than the old method. By using the this proposed method, there will be a possibility of solving many of divergent values equations which cannot be solved by the old style.

View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Jan 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Improved Runge-Kutta Method for Oscillatory Problem Solution Using Trigonometric Fitting Approach
...Show More Authors

This paper provides a four-stage Trigonometrically Fitted Improved Runge-Kutta (TFIRK4) method of four orders to solve oscillatory problems, which contains an oscillatory character in the solutions. Compared to the traditional Runge-Kutta method, the Improved Runge-Kutta (IRK) method is a natural two-step method requiring fewer steps. The suggested method extends the fourth-order Improved Runge-Kutta (IRK4) method with trigonometric calculations. This approach is intended to integrate problems with particular initial value problems (IVPs) using the set functions  and   for trigonometrically fitted. To improve the method's accuracy, the problem primary frequency  is used. The novel method is more accurate than the conventional Runge-Ku

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue May 30 2023
Journal Name
Iraqi Journal Of Science
Improve The Fully Convolutional Network Accuracy by Levelset and The Deep Prior Method
...Show More Authors

     Deep learning techniques allow us to achieve image segmentation with excellent accuracy and speed. However, challenges in several image classification areas, including medical imaging and materials science, are usually complicated as these complex models may have difficulty learning significant image features that would allow extension to newer datasets. In this study, an enhancing technique for object detection is proposed based on deep conventional neural networks by combining levelset and standard shape mask. First, a standard shape mask is created through the "probability" shape using the global transformation technique, then the image, the mask, and the probability map are used as the levelset input to apply the image segme

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sun Jan 01 2012
Journal Name
كلية التربية-الجامعة المستنصرية
Study the diffusion of Hydrogen in metals using a Runge-Kutta method
...Show More Authors

Publication Date
Sun Jul 29 2018
Journal Name
Iraqi Journal Of Science
A new approximate solution for the Telegraph equation of space-fractional order derivative by using Sumudu method
...Show More Authors

In this work, we are concerned with how to find an explicit approximate solution (AS) for the telegraph equation of space-fractional order (TESFO) using Sumudu transform method (STM). In this method, the space-fractional order derivatives are defined in the Caputo idea. The Sumudu method (SM) is established to be reliable and accurate. Three examples are discussed to check the applicability and the simplicity of this method. Finally, the Numerical results are tabulated and displayed graphically whenever possible to make comparisons between the AS and exact solution (ES).

View Publication Preview PDF
Publication Date
Wed Mar 01 2023
Journal Name
Iraqi Journal Of Physics
Calculation Mars – Earth distance and Mars orbital elements with Julian date
...Show More Authors

In this paper, the Mars orbital elements were calculated. These orbital elements—the major axis, the inclination (i), the longitude of the ascending node (W), the argument of the perigee (w), and the eccentricity (e)—are essential to knowing the size and shape of Mars' orbit. The quick basic program was used to calculate the orbital elements and distance of Mars from the Earth from 25/5/1950 over 10000 days. These were calculated using the empirical formula of Meeus, which depended on the Julian date, which slightly changed for 10000 days; Kepler's equation was solved to find Mars' position and its distance from the Sun. The ecliptic and equatorial coordinates of Mars were calculated. The distance between Mars and the center of the E

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Science
An Embedded 5(4) Pair of Optimized Runge-Kutta Method for the Numerical Solution of Periodic Initial Value Problems
...Show More Authors

      This paper presents an alternative method for developing effective embedded optimized Runge-Kutta (RK) algorithms to solve oscillatory problems numerically.   The embedded scheme approach has algebraic orders of 5 and 4. By transforming second-order ordinary differential equations (ODEs) into their first-order counterpart, the suggested approach solves first-order ODEs. The amplification error, phase-lag, and first derivative of the phase-lag are all nil in the embedded pair. The alternative method’s absolute stability is demonstrated. The numerical tests are conducted to demonstrate the effectiveness of the developed approach in comparison to other RK approaches. The alternative approach outperforms the current RK methods

... Show More
View Publication Preview PDF
Scopus Crossref