The current study was aimed to examine the effects of two types of Arbuscular mycorrhizal Fungi (F. mosseae, C. etunicatum) on the onion plant under two water conditions (normal irrigation and drought treatment). This study has aspects related to improve tolerance of an onion plant (Allium cepa L.) to water stress situations with taking in consideration regulate physiological Growth Parameters PGP of plant and biochemical [fungal root colonization, dry weight of mycorrhizal roots, Spore density of AM fungi, Relative water content, proline content, total carotenoids, Soluble protein content and Phosphorous application] in the existence or lack of AMF. The results indicate that the drought dealing producing increase of spore density of AM fungi, proline content, total carotenoids and soluble protein content except Fugal root colonization, plant root dry weight, Relative water content and Phosphorous uptake which were increased when associating with normal irrigation. The plants inoculated by each F. mosseae, C. etunicatum was noted a significant differences (P < 0.05) increase in some PGP comparing with uninoculated. The highest values of PGP were recorded when onion plant inoculated by two types of AMF. Normal irrigation was showed less enhancement of plants compared with plants that obtained drought stress. The inoculcation by both types of AMF resulted in increasing in an onion plant uptake and protection against drought stress, while the case of relative water content showed relatively similar values in both conditions comparing with non- AMF onion plant.
This study investigates the improvement of Iraqi atmospheric gas oil characteristics which contains 1.402 wt. % sulfur content and 16.88 wt. % aromatic content supplied from Al-Dura Refinery by using hydrodesulfurization (HDS) process using Ti-Ni-Mo/γ-Al2O3 prepared catalyst in order to achieve low sulfur and aromatic saturation gas oil. Hydrodearomatization (HDA) occurs simultaneously with hydrodesulfurization (HDS) process. The effect of titanium on the conventional catalyst Ni-Mo/γ-Al2O3 was investigated by physical adsorption and catalytic activity test. Ti-Ni-Mo/γ-Al2O3 catalyst was prepared under vacuum impregnation condition to ensure efficient precipitation of metals within the carrier γ-Al2O3. The loading percentage of met
... Show MoreIn this study, nano TiO2 was prepared with titanium isopropoxide (TTIP) as a resource to titanium oxide. The catalyst was synthesized using phosphotungstic acid (PTA) and, stearyl trimethyl ammonium bromide (STAB) was used as the structure-directing material. Characterization of the product was done by the X-ray diffraction (XRD), X-ray fluorescent spectroscopy (XRF), nitrogen adsorption/desorption measurements, Atomic Force Microscope (AFM) and Fourier transform infrared (FTIR) spectra, were used to characterize the calcined TiO2 nanoparticles by STAB and PWA. The TiO2 nanomaterials were prepared in three crystalline forms (amorphous, anatase, anatase-rutile). The results showed that the
... Show MoreThe growth of developments in machine learning, the image processing methods along with availability of the medical imaging data are taking a big increase in the utilization of machine learning strategies in the medical area. The utilization of neural networks, mainly, in recent days, the convolutional neural networks (CNN), have powerful descriptors for computer added diagnosis systems. Even so, there are several issues when work with medical images in which many of medical images possess a low-quality noise-to-signal (NSR) ratio compared to scenes obtained with a digital camera, that generally qualified a confusingly low spatial resolution and tends to make the contrast between different tissues of body are very low and it difficult to co
... Show MoreIn this work, the study of
The development of economic and environmentally friendly extractants to recover cobalt metal is required due to the increasing demand for this metal. In this study, solvent extraction of Co(II) from aqueous solution using a mixture of N,N0-carbonyl difatty amides (CDFAs) synthesised from palm oil as the extractant was carried out. The effects of various parameters such as acid, contact time, extractant concentration, metal ion concentration and stripping agent and the separation of Co(II) from other metal ions such as Fe(II), Ni(II), Zn(III) and Cd(II) were investigated. It was found that the extraction of Co(II) into the organic phase involved the formation of 1:1 complexes. Co(II) was successfully separated from commonly associated metal
... Show More
Abstract
The aim of the present work is to control of metal buried corrosion by alteration the media method. This method depended on the characteristics of each media. The corrosion rates in different media (soil, sand, porcelanite stone and gravel) for specimens of low carbon steel were measured by two methods weight loss method and polarization method, weight loss measured by buried specimens in these medias separately for 90 days. The polarization method includes preparing of specimen and salt solutions have electrical resistivity equivalent electrical resistivity of these media. The corrosion rate of two method results in (soil > sand> porcelainte stone> gravel). The lower corrosion rate happene
... Show MoreThis research presents the possibility of using banana peel (arising from agricultural production waste) as biosorbent for removal of copper from simulated aqueous solution. Batch sorption experiments were performed as a function of pH, sorbent dose, and contact time. The optimal pH value of Copper (II) removal by banana peel was 6. The amount of sorbed metal ions was calculated as 52.632 mg/g. Sorption kinetic data were tested using pseudo-first order, and pseudo-second order models. Kinetic studies showed that the sorption followed a pseudo second order reaction due to the high correlation coefficient and the agreement between the experimental and calculated values of qe. Thermodynamic parameters such as enthalpy change (ΔH
... Show MoreLight isotopes, especially closed shell nuclei, have significance in thermonuclear reactions of the Carbon-Nitrogen-Oxygen (CNO) cycle in stars. In this research, 12C(p, γ) 13N and 14N(p, γ) 15O reactions have been calculated by means of Matlab codes to find the reaction rate across a temperature range of 0.006 to 10 GK using non-resonant parts, as well as the astrophysical S- factor S(E) at low energies. It was concluded that the high binding energy of 12C and 14N nuclei make the reaction less probable thus enabling other competitive processes to develop, which enhances the probability of other competitive proton reactions in the CNO cycle.