Schiff bases (SBs) represent multipurpose ligands that can be prepared from the concentration of prime amines with carbonyl clusters. Creation of SB transition metal compounds via as ligands has opportunity of attaining coordination complexes of abnormal arrangement and stability. These transition metal compounds have extraordinary attention as a consequence of their dynamic portion in metalloenzymes and as biomimetic prototypical complexes as a result of their proximity to usual enzymes and proteins. These complexes are imperative in medicinal disciplines owing to their widespread range of biological actions. They mostly exhibit organic actions involving antifungal, antibacterial, antitumor, antidiabetic, herbicidal, antiproliferative, anticancer, and anti-inflammatory actions. The organic action of transition metal compounds resulting from the Schiff base ligands was extensively investigated. This paper reviews the scope, significance, and antimicrobial actions of Schiff base metal compounds.
Herein, we report designing a new Δ (delta‐shaped) proton sponge base of 4,12‐dihydrogen‐4,8,12‐triazatriangulene (compound
A new, simple, sensitive and fast developed method was used for the determination of methyldopa in pure and pharmaceutical formulations by using continuous flow injection analysis. This method is based on formation a burgundy color complex between methyldopa andammonium ceric (IV) nitrate in aqueous medium using long distance chasing photometer NAG-ADF-300-2. The linear range for calibration graph was 0.05-8.3 mmol/L for cell A and 0.1-8.5 mmol/L for cell B, and LOD 952.8000 ng /200 µL for cell A and 3.3348 µg /200 µL for cell B respectively with correlation coefficient (r) 0.9994 for cell A and 0.9991 for cell B, RSD % was lower than 1 % for n=8. The results were compared with classical method UV-Spectrophotometric at λ max=280 n
... Show MoreIn this work, substantial evidence was obtained for ligand reduction in cerium tetrakis acac complexes. Also, this ligand reduction of a negatively charged ligand proved to depend far less on the nature central metal than neutral ligands does. It is supposed that in Mz(acac)z complexes the charge is distributed evenly over the whole molecule. In this work these complexes were prepared and characterized by IR and CHN analysis to indicate the purities of these complexes. The electrochemistry techniques were shown as obtained for ligand reduction. This research was carried out at School of Chemistry and Molecular Science, Sussex University, U.K.
Binary relations or interactions among bio-entities, such as proteins, set up the essential part of any living biological system. Protein-protein interactions are usually structured in a graph data structure called "protein-protein interaction networks" (PPINs). Analysis of PPINs into complexes tries to lay out the significant knowledge needed to answer many unresolved questions, including how cells are organized and how proteins work. However, complex detection problems fall under the category of non-deterministic polynomial-time hard (NP-Hard) problems due to their computational complexity. To accommodate such combinatorial explosions, evolutionary algorithms (EAs) are proven effective alternatives to heuristics in solvin
... Show MoreThe polymeric complexes were obtained from the reaction of polymeric Schiff base.N-crotonyl-2-hydroxyphenylazomethine (HL), with divalent metals Pt (II), Cr (II). The modes of bonding and overall geometry of the complexes were determine through spectroscopic methods and compared with that reported from analogous monomeric ligand. This study revealed square planer geometry around the metal center for [Pt(L)Cl] and distorted octahedral geometry for Cr complex [Cr(L)Cl(H2O)2].
New metal complexes of some transition metal ions Co(II), Cu(II) , Cd(II) and Zn(II) were prepared by their reaction with previously prepared ligands HLI= (P-methyl anilino) phenyl acetonitrile and HLII = (P-methyl anilino) –P– chloro phenyl acetonitrile . The two ligands were prepared by Strecker’s procedure which includ the reaction of p- toluidine with benzaldehyde and P- chlorobenzaldehyde respectively. Structures were proposed depending on atomic absorption , i.r. and u.v.visible spectra in addition to magnetic susceptibility and electrical conductivity measurements.
In this work dithine complexes prepared from dithiol benzil ligand and central ion to the Ni,Pd,Pt, element the ligand and complexes have been investigated using FTIR spectrophotometer and uv-vis-NIR spectral reigns show higher intensity represents the ?-?* transition in the chromopher cycle .These absorption which appear in visible and near IR spectral regions ,According to the complexes of one group ,the spectral shifting due to the change of central ion has been found to be related to atomic number of central ion .This shifting is increased while decreasing the central ion atom number These complexes have been implemented in Nd+2:YAG cavity because each posses resonant absorption band near Nd+2:YAG, Nd+2:Glass emitting at (106
... Show MoreThe new ligand [3,3’-(1,2-phenylenebis(azanediyl))bis(5,5-dimethylcyclohex-2-en-1-one)] (L) derived from 5,5-Dimethylcyclohexane-1,3-dione with 1,2-phenylenediamine was used to prepare a new chain of metal complexes of Mn(ii), Co(ii), Ni(ii), Cu(ii), Cd(ii) and Zn(ii) by inclusive formula [M(L)]Cl2. Characterized compounds on the basis of 1H, 13CNMR (for ligand (L)), FT-IR and U.V spectrum, melting point, molar conduct, %C, %H and %N, the percentage of the metal in complexes %M, Magnetic susceptibility, thermal studies (TGA), while its corrosion inhibition for (plain steel) in tap water is studied by weight loss. These measurements proved th