Fast Shot Boundary Detection Based on Separable Moments and Support Vector Machine
...Show More Authors
Features is the description of the image contents which could be corner, blob or edge. Corners are one of the most important feature to describe image, therefore there are many algorithms to detect corners such as Harris, FAST, SUSAN, etc. Harris is a method for corner detection and it is an efficient and accurate feature detection method. Harris corner detection is rotation invariant but it isn’t scale invariant. This paper presents an efficient harris corner detector invariant to scale, this improvement done by using gaussian function with different scales. The experimental results illustrate that it is very useful to use Gaussian linear equation to deal with harris weakness.
A Multiple System Biometric System Based on ECG Data
Fiber‐reinforced elastic laminated composites are extensively used in several domains owing to their high specific stiffness and strength and low specific density. Several studies were performed to ascertain the factors that affect the composite plates’ dynamic properties. This study aims to derive a mathematical model for the dynamic response of the processed composite material in the form of an annular circular shape made of polyester/E‐glass composite. The mathematical model was developed based on modified classical annular circular plate theory under dynamic loading, and all its formulas were solved using MATLAB 2023. The mathematical model was also verified with real experimental work involving the vibration test of the f
... Show MoreYY Lazim, NAB Azizan, 2nd International Conference on Innovation and Entrepreneurship, 2014
Iraqi economy has grown rapidly. Iraqi citizen, therefore, should be very much involved with the comprehensive development after his long patience. Such development should begin with him and his family to get the housing commodity, which is indeed not a cheap one.
In this regard, the Iraqi legislator drew attention to the necessity of issuing housing finan
... Show MoreObjective: To assess the impact of a social support for pregnant women upon their pregnancy outcome Methodology: A descriptive purposive study was used to assess the impact of a social support on their pregnancy outcomes. The study was conducted from (22 \ September \ 2020 to 15 \ February \ 2021). A non-probability sample (purposive sample) was selected from 100 women. Data were collected through an interview with the mother in the counseling clinic, during the third trimester of pregnancy, as well as after childbirth in the labor wards to assess the outcome of pregnancy. Data were analyzed through descriptive statistics (frequency and percentages). Results: The most important thing observed in this study was the positive pregnancy outcome
... Show MoreIn the last few years, the literature conferred a great interest in studying the feasibility of using memristive devices for computing. Memristive devices are important in structure, dynamics, as well as functionalities of artificial neural networks (ANNs) because of their resemblance to biological learning in synapses and neurons regarding switching characteristics of their resistance. Memristive architecture consists of a number of metastable switches (MSSs). Although the literature covered a variety of memristive applications for general purpose computations, the effect of low or high conductance of each MSS was unclear. This paper focuses on finding a potential criterion to calculate the conductance of each MMS rather t
... Show MoreThe most significant function in oil exploration is determining the reservoir facies, which are based mostly on the primary features of rocks. Porosity, water saturation, and shale volume as well as sonic log and Bulk density are the types of input data utilized in Interactive Petrophysics software to compute rock facies. These data are used to create 15 clusters and four groups of rock facies. Furthermore, the accurate matching between core and well-log data is established by the neural network technique. In the current study, to evaluate the applicability of the cluster analysis approach, the result of rock facies from 29 wells derived from cluster analysis were utilized to redistribute the petrophysical properties for six units of Mishri
... Show MoreAdvanced strategies for production forecasting, operational optimization, and decision-making enhancement have been employed through reservoir management and machine learning (ML) techniques. A hybrid model is established to predict future gas output in a gas reservoir through historical production data, including reservoir pressure, cumulative gas production, and cumulative water production for 67 months. The procedure starts with data preprocessing and applies seasonal exponential smoothing (SES) to capture seasonality and trends in production data, while an Artificial Neural Network (ANN) captures complicated spatiotemporal connections. The history replication in the models is quantified for accuracy through metric keys such as m
... Show MoreEmpirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, F
... Show More