The cement industry is considered one of the strategic industries, because it is directly related to construction work and cement is used as a hydraulic binder. However, it is a simple industry compared to major industries and depends on the availability of the necessary raw materials. This study focuses on optimizing and coordinating the location of raw materials needed for the cement manufacturing in Wasit Governorate in Iraq. Field works include detailed reconnaissance, topographic work, and description and sampling of 24 lithological sections that represent the carbonate deposits, which crop out in the area. The investigated area has the following specifications: The weighted averages of chemical components in the industrial bed are as follows: CaO = 47.83%, MgO = 1.12%, SiO2 = 7.28%, SO3 = 0.34%, Fe2O3 = 1.85%, Al2O3 = 1.85%, L.O.I = 39.26%, Na2O = 0.29%, and K2O = 0.38%. The average thickness of the investigated raw materials is 15.68 m. The average bulk density of the investigated raw materials is 2.32 g/cm3. The compressive strength of the investigated raw materials ranges from 6.182 to 55.21 MN/m2. The positive area is 922,552 m2. The volume of the industrial bed is 14,466,242 m3. The economic reserve of the industrial bed is 33,561,682 tons.
Aerial manipulation of objects has a number of advantages as it is not limited by the morphology of the terrain. One of the main problems of the aerial payload process is the lack of real-time prediction of the interaction between the gripper of the aerial robot and the payload. This paper introduces a digital twin (DT) approach based on impedance control of the aerial payload transmission process. The impedance control technique is implemented to develop the target impedance based on emerging the mass of the payload and the model of the gripper fingers. Tracking the position of the interactional point between the fingers of gripper and payload, inside the impedance control, is achieved using model predictive control (MPD) approach.
... Show MoreThe permeability is the most important parameter that indicates how efficient the reservoir fluids flow through the rock pores to the wellbore. Well-log evaluation and core measurements techniques are typically used to estimate it. In this paper, the permeability has been predicted by using classical and Flow zone indicator methods. A comparison between the two methods shows the superiority of the FZI method correlations, these correlations can be used to estimate permeability in un-cored wells with a good approximation.
Background:The most common pattern of dyslipidemia in diabetic patients is increased triglyceride (TG) and decreased HDL cholesterol level, The concentration of LDL cholesterol in diabetic patients is usually not significantly different from non diabetic individuals, Diabetic patients may have elevated levels of non-HDL cholesterol [ LDL+VLDL]. However type 2 diabetic patients typically have apreponderance of smaller ,denser LDL particles which possibly increases atherogenicity even if the absolute concentration of LDL cholesterol is not significantly increased. The Third Adult Treatment Panel of the National Cholesterol Education Program (NCEP III) and the American Heart Association (AHA ) have designate diabetes as a coronary heart dis
... Show MoreA novel technique Sumudu transform Adomian decomposition method (STADM), is employed to handle some kinds of nonlinear time-fractional equations. We demonstrate that this method finds the solution without discretization or restrictive assumptions. This method is efficient, simple to implement, and produces good results. The fractional derivative is described in the Caputo sense. The solutions are obtained using STADM, and the results show that the suggested technique is valid and applicable and provides a more refined convergent series solution. The MATLAB software carried out all the computations and graphics. Moreover, a graphical representation was made for the solution of some examples. For integer and fractional order problems, solutio
... Show MoreIn this study, pure Co3O4 nano structure and doping with 4 %, and
6 % of Yttrium is successfully synthesized by hydrothermal method.
The XRD examination, optical, electrical and photo sensing
properties have been studied for pure and doped Co3O4 thin films.
The X-ray diffraction (XRD) analysis shows that all films are
polycrystalline in nature, having cubic structure.
The optical properties indication that the optical energy gap follows
allowed direct electronic transition calculated using Tauc equation
and it increases for doped Co3O4. The photo sensing properties of
thin films are studied as a function of time at different wavelengths to
find the sensitivity for these lights.
High photo sensitivity dope