The cement industry is considered one of the strategic industries, because it is directly related to construction work and cement is used as a hydraulic binder. However, it is a simple industry compared to major industries and depends on the availability of the necessary raw materials. This study focuses on optimizing and coordinating the location of raw materials needed for the cement manufacturing in Wasit Governorate in Iraq. Field works include detailed reconnaissance, topographic work, and description and sampling of 24 lithological sections that represent the carbonate deposits, which crop out in the area. The investigated area has the following specifications: The weighted averages of chemical components in the industrial bed are as follows: CaO = 47.83%, MgO = 1.12%, SiO2 = 7.28%, SO3 = 0.34%, Fe2O3 = 1.85%, Al2O3 = 1.85%, L.O.I = 39.26%, Na2O = 0.29%, and K2O = 0.38%. The average thickness of the investigated raw materials is 15.68 m. The average bulk density of the investigated raw materials is 2.32 g/cm3. The compressive strength of the investigated raw materials ranges from 6.182 to 55.21 MN/m2. The positive area is 922,552 m2. The volume of the industrial bed is 14,466,242 m3. The economic reserve of the industrial bed is 33,561,682 tons.
This work deals with the preparation of a zeolite/polymer flat sheet membrane with hierarchical porosity and ion-exchange properties. The performance of the prepared membrane was examined by the removal of chromium ions from simulated wastewater. A NaY zeolite (crystal size of 745.8 nm) was prepared by conventional hydrothermal treatment and fabricated with polyethersulfone (15% PES) in dimethylformamide (DMF) to obtain an ion-exchange ultrafiltration membrane. The permeate flux was enhanced by increasing the zeolite content within the membrane texture indicating increasing the hydrophilicity of the prepared membranes and constructing a hierarchically porous system. A membrane contain
The aim of this paper is to introduce the concepts of asymptotically p-contractive and asymptotically severe accretive mappings. Also, we give an iterative methods (two step-three step) for finite family of asymptotically p-contractive and asymptotically severe accretive mappings to solve types of equations.
The Electrocardiogram records the heart's electrical signals. It is a practice; a painless diagnostic procedure used to rapidly diagnose and monitor heart problems. The ECG is an easy, noninvasive method for diagnosing various common heart conditions. Due to its unique advantages that other humans do not share, in addition to the fact that the heart's electrical activity may be easily detected from the body's surface, security is another area of concern. On this basis, it has become apparent that there are essential steps of pre-processing to deal with data of an electrical nature, signals, and prepare them for use in Biometric systems. Since it depends on the structure and function of the heart, it can be utilized as a biometric attribute
... Show MoreIncreasing world demand for renewable energy resources as wind energy was one of the goals behind research optimization of energy production from wind farms. Wake is one of the important phenomena in this field. This paper focuses on understanding the effect of angle of attack (α) on wake characteristics behind single horizontal axis wind turbines (HAWT). This was done by design three rotors different from each other in value of α used in the rotor design process. Values of α were (4.8˚,9.5˚,19˚). The numerical simulations were conducted using Ansys Workbench 19- Fluent code; the used turbulence model was (k-ω SST). The results showed that best value for extracted wind energy was at α=19˚, spread distance of wak
... Show MoreStudy of the development of an activated carbon nanotube catalyst for alkaline fuel cell technology. Through the prepared carbon nanotubes catalyst by an electrochemical deposition technique. Different analytical approaches such as X-ray diffraction (XRD) to determine the structural properties and Scanning Electron Microscope (SEM), were used to characterize, Mesh stainless steel catalyst substrate had an envelope structure and a large surface area. Voltages were also obtained at 1.83 V and current at 3.2 A of alkaline fuel cell. In addition, study the characterization of the electrochemical parameters.
In this paper had been studied the characterization of the nanocatalyst (NiO) Mesh electrodes. For fuel cell. The catalyst is prepared and also the electrodes The structural were studied through the analysis of X-ray diffraction of the prepared nanocatalyst for determining the yielding phase and atomic force microscope to identify the roughness of prepared catalyst surface, Use has been nanocatalyst led to optimization of cell voltage, current densities & power for a fuel cell.
Been using a pv system program to determine the solar window for Baghdad city . the solar window for any location can be determine by deviating left and right from the geographical south as well as deviation according to the amount of tilt angle with the horizon for fixed panel so that will not change the average of solar radiation incident over the whole year and this lead to help in the process of installation of fixed solar panel without any effect on annual output .the range of solar window for Baghdad city between two angles ( -8 - +8 ) degrees left to right of the geographical south and tilt angle that allowed for the horizon range between angles (21- 30) degrees so that the amount of solar radiation that falling on the solar pan
... Show MoreFG Mohammed, HM Al-Dabbas, Iraqi journal of science, 2018 - Cited by 6