The modern industrial projects and complexes that adopt ecological systems, and renewable, clean and environmentally friendly energy, not only contribute to the development of an environmentally friendly production method but can achieve long-term economic and industrial development by preserving environmental resources. The ecological industrial systems and modern industrial technologies are the ideal solutions to rationalize excessive use and preserve the elements of the environment and natural resources, the most important of which is the existence of several methods and programs for the development of industrial sites, and there is important to adopt mechanisms and programs to solve the problems of traditional industries to reach industrial techniques characterized by rationalization, reduction in the depletion of natural resources, the most important of which is the triple system (reduction, recycling, and reuse of industrial waste) and other eco-systems. By applying the indicators to the study area in the new industrial city in Ramady, it was found that there is a weakness in the application of the indicators and did not achieve the required level. It becomes clear to us the need to take into account the activation of these indicators to reach the achievement within the industrial city.
In this paper, a new high-performance lossy compression technique based on DCT is proposed. The image is partitioned into blocks of a size of NxN (where N is multiple of 2), each block is categorized whether it is high frequency (uncorrelated block) or low frequency (correlated block) according to its spatial details, this done by calculating the energy of block by taking the absolute sum of differential pulse code modulation (DPCM) differences between pixels to determine the level of correlation by using a specified threshold value. The image blocks will be scanned and converted into 1D vectors using horizontal scan order. Then, 1D-DCT is applied for each vector to produce transform coefficients. The transformed coefficients will be qua
... Show MoreA series of new 4-(((4-(5-(Aryl)-1,3,4-oxadiazol-2-yl)benzyl)oxy)methyl)-2,6-dimethoxy phenol (6a-i) were synthesized from cyclization of 4-(((4-hydroxy-3,5-dimethoxy benzyl)oxy)methyl)benzohydrazide with substituted carboxylic acid in the presences of phosphorusoxy chloride.The resulting compounds were characterized by IR, 1H-NMR, 13C-NMR, and HRMS data. 2,2-Diphenyl-1-picrylhydrazide (DPPH) and ferric reducing antioxidant power (FRAP) assays were used to screen their antioxidant properties. Compounds 6i and 6h exhibited significant antioxidant ability in both assay. Furthermore, type of substituent and their position of the aryl attached 1,3,4-oxadiazole ring at position five are play an important roles in enhancing or declining the antio
... Show MoreThis search includes the preparation of Schiff base ligand (SB) from condensation primary amine with vanillin. The new ligand was diagnosed by spectroscopic methods as Mass, NMR, CHN and FTIR. Ligand complexes were mixed from new (SB) and Anthranillic acid (A) with five metal (II) chlorides. The preparation and diagnosis were conducted by FTIR, CHN, UV-visible, molar conductivity, atomic absorption and magnetic moment. The octahedral geometrical shape of the complexes was proposed. The ligands and their new complexes were screened with two different types of bacteria.
The accumulation of construction and demolition waste is one of the major problems in modern construction. Hence, this research investigates the use of waste brick in concrete. Seven different concrete mixes were investigated in this study: a control concrete mix, three mixes with volumetric replacement (10, 20, and 30)% of natural aggregate with brick aggregate, and two mixes with the addition of nano brick powder at a percentage level of 5– 10% by weight of cementitious materials. And the last one was mixed with 10% nano brick and 10% coarse brick aggregate. The experimental results for the additive of nano brick powder showed an enhancement in mechanical properties (compressive,
Thin films Tin sulfide SnS pure and doped with different ratios of Cu (X=0, 0.01, 0.03 and 0.05) were prepared using thermal evaporation with a vacuum of 4*10-6mbar on two types of substrates n-type Si and glass with (500) nm thickness for solar cell application. X-ray diffraction and AFM analysis were carried out to explain the influence of Cu ratio dopant on structural and morphological properties respectively. SnS phase appeared forming orthorhombic structure with preferred orientation (111), increase the crystallinity degree and surface roughness with increase Cu ratio. UV/Visible measurement revealed the decrease in energy gap from 1.9eV for pure SnS to 1.5 for SnS: Cu (0.05) making these samples suitable f
... Show MoreThis work aimed to study the effect of laser surface treatment on the mechanical characteristics and corrosion behaviour of grey cast iron type A159. Many technical applications used conventional surface treatment, but laser surface hardening has recently been used to enhance the surface properties of many alloys. The mechanical characteristics, including microstructure, microhardness, and wear resistance of A159 grey cast iron, were studied, in addition to corrosion behaviour. The experimental laser parameters in this work were 0.9, 1.2, and 1.5 KW power with continuous wave carbon dioxide lasers with scanning speeds of 10 and 12 mm/s were used. The results found that phase-transitional alterations in microstructure were influenced by lase
... Show More