Typhoid fever (TF) is a systemic infection caused by Salmonella Typhi (Salmonella Enterica) transmitted through contaminated water, food, or contact with infected individuals. In various infectious diseases, blood viscosity (BV) is affected by changes in hemoglobin concentrations and acute phase reactants. Inflammatory responses can lead to elevated plasma protein levels and further affect BV. This study aimed to investigate BV changes in patients with acute TF. A cross-sectional study was performed involving 55 patients with acute TF compared to 38 healthy controls. BV and inflammatory parameters were measured in both groups. TF patients showed reduced blood cells compared to healthy controls (p=0.001). Additionally, plasma total protein (TP) levels significantly increased to 10.79±1.05 g/L in TF patients compared to 7.035±1.44 g/L in healthy controls (p=0.03). Hematocrit (HCT) levels were 11.67±2.89% in TF patients and 12.84±2.02% in healthy controls (p=0.07), suggesting a trend towards increased BV in TF patients. Elevated BV is involved in the pathogenesis of different inflammatory and infectious diseases. The increased BV in TF patients may raise the risk of complications. Therefore, monitoring BV might be a crucial tool in TF patients, mainly in the high-risk group, for early detection of cardiovascular complications.
Experimental measurements of viscosity and thermal conductivity of single layer of graphene . based DI-water nanofluid are performed as a function of concentrations (0.1-1wt%) and temperatures between (5 to 35ºC). The result reveals that the thermal conductivity of GNPs nanofluids was increased with increasing the nanoparticle weight fraction concentration and temperature, while the maximum enhancement was about 22% for concentration of 1 wt.% at
35ºC. These experimental results were compared with some theoretical models and a good agreement between Nan’s model and the experimental results was observed. The viscosity of the graphene nanofluid displays Newtonian and Non-Newtonian behaviors with respect to nanoparticles concen
This study proposes a mathematical approach and numerical experiment for a simple solution of cardiac blood flow to the heart's blood vessels. A mathematical model of human blood flow through arterial branches was studied and calculated using the Navier-Stokes partial differential equation with finite element analysis (FEA) approach. Furthermore, FEA is applied to the steady flow of two-dimensional viscous liquids through different geometries. The validity of the computational method is determined by comparing numerical experiments with the results of the analysis of different functions. Numerical analysis showed that the highest blood flow velocity of 1.22 cm/s occurred in the center of the vessel which tends to be laminar and is influe
... Show MoreA numerical method is developed to obtain two-dimensional velocity and pressure distribution through a cylindrical pipe with cross jet flows. The method is based on solving partial differential equations for the conservation of mass and momentum by finite difference method to convert them into algebraic equations. This well-known problem is used to introduce the basic concepts of CFD including: the finite- difference mesh, the discrete nature of the numerical solution, and the dependence of the result on the mesh refinement. Staggered grid implementation of the numerical model is used. The set of algebraic equations is solved simultaneously by “SIMPLE” algorithm to obtain velocity and pressure distribution within a pipe. In order to
... Show MoreExamination of 241 specimens of two bee-eater species, Merops apiaster and Merops
superciliosus persicus reveal recording of Haemoproteus meropis (Zagar, 1945) emend.
Bennett, 1978 and H. manwelli Bennett, 1978 for the first time in Iraq. A new species
Haemoproteus hudaidensis sp. nov. is described. Microfilariae are also infected the two host
species. The results are discussed with the pertinent literature and the necessary comparision
of morphometric measurements of the recorded parasites with that previously reported is
provided along with a taxonomic key including the newly described haemoproteid.
Congenital distal vaginal obstruction is usually asymptomatic in a newborn female. On rare occasions, it may present as an acute emergency with life threatening complications.This paper is reporting the rare condition of two newborn females presenting urgently with abdominal distension and acute urinary retention as a result of congenital distal vaginal Obstruction. The case history and urgent management shall be presented and both conditions shall be discussed.
The purpose of this study is designate quenching and tempering heat treatment by using Taguchi technique to determine optimal factors of heat treatment (austenitizing temperature, percentage of nanoparticles, type of base media, nanoparticles type and soaking time) for increasing hardness, wear rate and impact energy properties of 420 martensitic stainless steel. An (L18) orthogonal array was chosen for the design of experiment. The optimum process parameters were determined by using signal-to-noise ratio (larger is better) criterion for hardness and impact energy while (Smaller is better) criterion was for the wear rate. The importance levels of process parameters that effect on hardness, wear rate and impact energy propertie
... Show MoreAt atmospheric pressure and at a frequency of 9.1 kHz, a constructed magnetically stabilized tornado gliding arc discharge (MSGAD) system was utilized in this study to generate a non-thermal plasma with an alternating voltage source from 2,4,6,8 to 10 kV. Argon gas was used to generate the arc plasma with an adjustable flow rate using a flow meter regulator to stabilize the gas flow rate to 2 L/min. A gliding plasma discharge is achieved by a magnetic field for the purpose of a planned investigation. The influence of the magnetically stabilized tornado gliding arc discharge parameters such as magnetic field and applied voltage on microscopic tornado plasma parameters was studied. The electron temperature1was measured using a Boltzmann plot
... Show MoreThe calculation of the oil density is more complex due to a wide range of pressuresand temperatures, which are always determined by specific conditions, pressure andtemperature. Therefore, the calculations that depend on oil components are moreaccurate and easier in finding such kind of requirements. The analyses of twenty liveoil samples are utilized. The three parameters Peng Robinson equation of state istuned to get match between measured and calculated oil viscosity. The Lohrenz-Bray-Clark (LBC) viscosity calculation technique is adopted to calculate the viscosity of oilfrom the given composition, pressure and temperature for 20 samples. The tunedequation of state is used to generate oil viscosity values for a range of temperatu
... Show More