We can summarize the main risk factors for type 2 diabetes mellitus (T2DM) by looking at our nutrition, age, and lifestyle. β-cell dysfunction and insulin resistance (IR) are outcomes of the pathophysiology of type 2 diabetes. As an indirect result of IR on important metabolic enzymes, lipid and lipoprotein abnormalities are also a factor in T2DM patients. Recent research has indicated that lipid fluctuation may be the cause of poor glucose metabolism as well as one of its effects. Fatty acids (FAs) affect cell membrane fluidity and permeability, insulin receptor binding and signaling, and the translocation of glucose transporters. Therefore, it is suggested that FAs might play a crucial part in the emergence of IR and T2DM. The cu
... Show MoreWe can summarize the main risk factors for type 2 diabetes mellitus (T2DM) by looking at our nutrition, age, and lifestyle. β-cell dysfunction and insulin resistance (IR) are outcomes of the pathophysiology of type 2 diabetes. As an indirect result of IR on important metabolic enzymes, lipid and lipoprotein abnormalities are also a factor in T2DM patients. Recent research has indicated that lipid fluctuation may be the cause of poor glucose metabolism as well as one of its effects. Fatty acids (FAs) affect cell membrane fluidity and permeability, insulin receptor binding and signaling, and the translocation of glucose transporters. Therefore, it is suggested that FAs might play a crucial part in the emergence of IR and T2DM. The cu
... Show More<span lang="EN-US">Diabetes is one of the deadliest diseases in the world that can lead to stroke, blindness, organ failure, and amputation of lower limbs. Researches state that diabetes can be controlled if it is detected at an early stage. Scientists are becoming more interested in classification algorithms in diagnosing diseases. In this study, we have analyzed the performance of five classification algorithms namely naïve Bayes, support vector machine, multi layer perceptron artificial neural network, decision tree, and random forest using diabetes dataset that contains the information of 2000 female patients. Various metrics were applied in evaluating the performance of the classifiers such as precision, area under the c
... Show MoreObjective(s): to assess the effectiveness of educational program on improving diabetic foot self-efficacy concerning managing their feet. Methodology: A descriptive analytic (quasi – experimental) design study was carried out at Diabetic and Endocrinology Center in Baghdad- Rusafa Sector from 2nd of May 2017, to27th June 2018. Non-probability sample of (80) male and female diabetic patients were selected. The study instruments consisted of two major parts: first
The aim of this research is to solve a real problem in the Department of Economy and Investment in the Martyrs establishment, which is the selection of the optimal project through specific criteria by experts in the same department using a combined mathematical model for the two methods of analytic hierarchy process and goal programming, where a mathematical model for goal programming was built that takes into consideration the priorities of the goal criteria by the decision-maker to reach the best solution that meets all the objectives, whose importance was determined by the hierarchical analysis process. The most important result of this research is the selection of the second pro
... Show MoreNeighShrink is an efficient image denoising algorithm based on the discrete wavelet
transform (DWT). Its disadvantage is to use a suboptimal universal threshold and identical
neighbouring window size in all wavelet subbands. Dengwen and Wengang proposed an
improved method, which can determine an optimal threshold and neighbouring window size
for every subband by the Stein’s unbiased risk estimate (SURE). Its denoising performance is
considerably superior to NeighShrink and also outperforms SURE-LET, which is an up-todate
denoising algorithm based on the SURE. In this paper different wavelet transform
families are used with this improved method, the results show that Haar wavelet has the
lowest performance among
In this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.
The compressive residual stresses generated by shot peening, is increased in a direct proportional way with shot peening time (SPT). For each metal, there is an optimum shot peening time (O.S.T) which gives the optimum fatigue life. This paper experimentally studied to optimize shot peening time of aluminium alloy 6061-T651 as well as using of and analysis of variance (ANOVA).
Two types of fatigue test specimens’ configuration were used, one without notch (smooth) and the other with a notch radius (1,25mm), each type was shot peened at different time. The (O.S.T) was experimentally estimated to be 8 minutes reaching the surface stresses at maximum peak of -184.94 MPa.
A response surface methodology (RSM) is presen
... Show More