This study aimed at some of the criteria used to determine the form of the river basins, and exposed the need to modify some of its limitations. In which, the generalization of the elongation and roundness ratio coefficient criterion was modified, which was set in a range between (0-1). This range goes beyond determining the form of the basin, which gives it an elongated or rounded feature, and the ratio has been modified by making it more detailed and accurate in giving the basin a specific form, not only a general characteristic. So, we reached a standard for each of the basins' forms regarding the results of the elongation and circularity ratios. Thus, circular is (1-0.8), and square is (between 0.8-0.6), the blade or oval form is (0.6-0.4), Triangle is (between 0.4-0.2), Rectangle (0.2-0). The calibration was applied to the basins of area being studied, and proved a great match between the results and reality of these basins. The criterion of the form modulus and the buckling modulus of the basins were also modified according to the results of the study regarding the Mamaran basin and its auxiliary basins.
There are many researches deals with constructing an efficient solutions for real problem having Multi - objective confronted with each others. In this paper we construct a decision for Multi – objectives based on building a mathematical model formulating a unique objective function by combining the confronted objectives functions. Also we are presented some theories concerning this problem. Areal application problem has been presented to show the efficiency of the performance of our model and the method. Finally we obtained some results by randomly generating some problems.
This manuscript presents a new approach to accurately calculating exponential integral function that arises in many applications such as contamination, groundwater flow, hydrological problems and mathematical physics. The calculation is obtained with easily computed components without any restrictive assumptions
A detailed comparison of the execution times is performed. The calculated results by the suggested approach are better and faster accuracy convergence than those calculated by other methods. Error analysis of the calculations is studied using the absolute error and high convergence is achieved. The suggested approach out-performs all previous methods used to calculate this function and this decision is
... Show MoreIn this paper, we studied the travelling wave solving for some models of Burger's equations. We used sine-cosine method to solution nonlinear equation and we used direct solution after getting travelling wave equation.
This paper examined the climatic water balance and hydrogeological conditions of the water bearing layers within Lailan basin. To achieve the water balance the meteorological data from Kirkuk station for the period (1970 to 2016) was used to calculate the water surplus and water deficit. Based on Mehta's model the water surplus (Ws) is equal to (127.86 mm/ year) representing 36.87 % of the total rainfall, while 63.13% of the total rainfall are water deficit. The study area is characterized by two main aquifer types, unconfined and semi-confined. Generally, groundwater recharge occurs from both sides of the basin toward the center and the general flow direction is from northeast to southwest. To det
... Show MoreIn this paper, we model the spread of coronavirus (COVID -19) by introducing stochasticity into the deterministic differential equation susceptible -infected-recovered (SIR model). The stochastic SIR dynamics are expressed using Itô's formula. We then prove that this stochastic SIR has a unique global positive solution I(t).The main aim of this article is to study the spread of coronavirus COVID-19 in Iraq from 13/8/2020 to 13/9/2020. Our results provide a new insight into this issue, showing that the introduction of stochastic noise into the deterministic model for the spread of COVID-19 can cause the disease to die out, in scenarios where deterministic models predict disease persistence. These results were also clearly ill
... Show MoreIn this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using
In this paper, the computational method (CM) based on the standard polynomials has been implemented to solve some nonlinear differential equations arising in engineering and applied sciences. Moreover, novel computational methods have been developed in this study by orthogonal base functions, namely Hermite, Legendre, and Bernstein polynomials. The nonlinear problem is successfully converted into a nonlinear algebraic system of equations, which are then solved by Mathematica®12. The developed computational methods (D-CMs) have been applied to solve three applications involving well-known nonlinear problems: the Darcy-Brinkman-Forchheimer equation, the Blasius equation, and the Falkner-Skan equation, and a comparison between t
... Show MoreIn this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using
A new Turbidimetric method characterized by simplicity, accuracy and speed for determination of Hydronium ion by continuous flow injection analysis. The method was based on the formation of complex Zn3[Fe(CN)6] for Zinc(II) that was eluted by Hydronium ion from cation exchanger column with Potassium hexacyanoferrate(III) for the formation of a pale yellow precipitate and this precipitate was determined using homemade Linear Array Ayah-5SX1-T-1D continuous flow injection analyser. The optimum parameters were 2.7 mL.min-1 flow rate using H2O as a carrier stream, 1.7 mL.min-1 reagent stream, 110 L sample volume and open valve for the purge of the sample segment. Data treatment shows that linear range 0.01-0.1 mol.L-1 for each acids (HClO
... Show More