<span>Deepfakes have become possible using artificial intelligence techniques, replacing one person’s face with another person’s face (primarily a public figure), making the latter do or say things he would not have done. Therefore, contributing to a solution for video credibility has become a critical goal that we will address in this paper. Our work exploits the visible artifacts (blur inconsistencies) which are generated by the manipulation process. We analyze focus quality and its ability to detect these artifacts. Focus measure operators in this paper include image Laplacian and image gradient groups, which are very fast to compute and do not need a large dataset for training. The results showed that i) the Laplacian group operators, as a value, may be lower or higher in the fake video than its value in the real video, depending on the quality of the fake video, so we cannot use them for deepfake detection and ii) the gradient-based measure (GRA7) decreases its value in the fake video in all cases, whether the fake video is of high or low quality and can help detect deepfake.</span>
The progress of network and multimedia technologies has been phenomenal during the previous two decades. Unauthorized users will be able to copy, retransmit, modify reproduction, and upload the contents more easily as a result of this innovation. Malicious attackers are quite concerned about the development and widespread use of digital video. Digital watermarking technology gives solutions to the aforementioned problems. Watermarking methods can alleviate these issues by embedding a secret watermark in the original host data, allowing the genuine user or file owner to identify any manipulation. In this study, lots of papers have been analyzed and studied carefully, in the period 2011–2022. The historical basis of the subject shou
... Show MoreShot boundary detection is the process of segmenting a video into basic units known as shots by discovering transition frames between shots. Researches have been conducted to accurately detect the shot boundaries. However, the acceleration of the shot detection process with higher accuracy needs improvement. A new method was introduced in this paper to find out the boundaries of abrupt shots in the video with high accuracy and lower computational cost. The proposed method consists of two stages. First, projection features were used to distinguish non boundary transitions and candidate transitions that may contain abrupt boundary. Only candidate transitions were conserved for next stage. Thus, the speed of shot detection was improved by r
... Show MoreTechnological development in the last years leads to increase the access speed in the internet networks that allow a huge number of users watching videos online.
Video streaming important type in the real-time video sessions and one of the most popular applications in networking systems. The Quality of Service (QoS) techniques give us indicate to the effect of multimedia traffic on the network performance, but this techniques do not reflect the user perception. Using QoS and Quality of Experience (QoE) together can give guarantee to the distribution of video content according to video content characteristics and the user experience .
To measure the users’ perceptio
... Show MoreColonoscopy is a popular procedure which is used to detect an abnormality. Early diagnosis can help to heal many patients. The purpose of this paper is removing/reducing some artifacts to improve the visual quality of colonoscopy videos to provide better information for physicians. This work complements a series of work consisting of three previously published papers. In this paper, optic flow is used for motion compensation, where a number of consecutive images are registered to integrate some information to create a new image that has/reveals more information than the original one. Colon images were classified into informative and noninformative images by using a deep neural network. Then, two different strategies were use
... Show MoreRNA Sequencing (RNA-Seq) is the sequencing and analysis of transcriptomes. The main purpose of RNA-Seq analysis is to find out the presence and quantity of RNA in an experimental sample under a specific condition. Essentially, RNA raw sequence data was massive. It can be as big as hundreds of Gigabytes (GB). This massive data always makes the processing time become longer and take several days. A multicore processor can speed up a program by separating the tasks and running the tasks’ errands concurrently. Hence, a multicore processor will be a suitable choice to overcome this problem. Therefore, this study aims to use an Intel multicore processor to improve the RNA-Seq speed and analyze RNA-Seq analysis's performance with a multiproce
... Show MoreIn this paper, a fast lossless image compression method is introduced for compressing medical images, it is based on splitting the image blocks according to its nature along with using the polynomial approximation to decompose image signal followed by applying run length coding on the residue part of the image, which represents the error caused by applying polynomial approximation. Then, Huffman coding is applied as a last stage to encode the polynomial coefficients and run length coding. The test results indicate that the suggested method can lead to promising performance.