New twin compounds having four-, five-, and seven- membered heterocyclic rings were synthesized via Schiff bases (1a,b) which were obtained by the condensation of o-tolidine with two moles of 4- N,N-dimethyl benzaldehyde or 4- chloro benzaldehyde. The reaction of these Schiff bases with two moles of phenyl isothiocyanate, phenyl isocyanate or naphthyl isocyanate as in scheme(1) led to the formation of bis -1,3- diazetidin- 2- thion and bis -1,3- diazetidin -2-one derivatives (2-4 a,b). While in scheme (2) bis imidazolidin-4-one (5a,b) ,bistetrazole (6a,b) and bis thiazolidin-4-one (7a,b) derivatives were produced by reacting the mentioned Schiff bases(1a,b)with two moles of glycine, sodium azide or thioglycolic acid, respectively. The new bis -1,3-oxazepine derivatives (8-12a,b) in scheme(3) were synthesized from various anhydrides and the same Schiff bases(1a,b). All the synthesized compounds have been characterized by melting points , elemental analysis, FTIR and 1HMNR (of some of theme) spectroscopy. The synthesized compounds have been screened for their antibacterial activities. They exhibited good antibacterial activity against Escherichia coli (G-) and Staphylococus aureus (G+) .
المستودع الرقمي العراقي. مركز المعلومات الرقمية التابع لمكتبة العتبة العباسية المقدسة
A new synthesis of Schiff (K) 6 and Mannich bases (Q) 7 had formed compound (Q) 7 by reacting compound (K) with N-methylaniline at the presence of formalin 35% to given Mannich base (Q). Additionally, new complexes were formed by reacting Schiff base (K) with metal salts CuCl2·2H2O, PdCl2·2H2O, and PtCl6·6H2O by 2:1 of M:L ratio. New ligands and their complexes were characterized, exanimated, and confirmed through several techniques, including FTIR, UV-visible, 1H-NMR, 13C-NMR spectroscopy, CHN analysis, FAA, TG, molar conductivity, and magnetic susceptibility. These compounds and their complexes were screened against breast cancer cells. It was determined that several of these compounds had a significant anti-breast cancer effec
... Show MoreObjective: Hesperidin (HSP) is a pharmacologically active organic compound found in citrus fruits and peppermint. We synthesized a new HSP derivative by reacting it with 5-Amino-1,3,4-thiadiazole-2-thiol in acetic acid. Methods: This compound was characterized by Fourier-transform infrared, proton nuclear magnetic resonance, and electron impact mass spectra. A molecular docking study explores the predicted binding of the compound and its possible mode of action. Bioavailability, site of absorption, drug mimic, and topological polar surface was predicted using absorption, distribution, metabolism, and excretion (ADME) studies. Results: The docking study predicts that the new compound binds to the active sites of Aurora-B
... Show MoreHeterocyclic compounds are crucial for medicinal chemistry and the development of therapeutic agents like broad-spectrum antibiotics. This study devised a facile procedure to synthesize novel antimicrobial bicyclic heterocycles from 2-mercapto-3-phenylquinazolin-4(3H)-one. Advanced analytical techniques including 1 H and 13C NMR, elemental analysis, and FT-IR spectroscopy characterized the intricate chemical structures of the products. In vitro assays tested the heterocycles against aerobic and anaerobic bacterial strains using fluconazole and ciprofloxacin as antifungal and antibacterial controls. Results demonstrated the formidable broad-spectrum antibacterial and antifungal activities of the synthesized compounds, with growth inhibition
... Show MoreA Schiff base ligand (L) was synthesized via condensation of N-( 1-naphthyl) ethylenediamine dihydrochloride with phthalaldehyde. The ligand was characterized by FT-IR, UV–Vis, 1H NMR, mass spectrometry, and elemental analysis (C, H, N). Five metal complexes (Co(II), Ni(II), Cu(II), Zn(II), and Cd(II)) were prepared with the ligand in a 1:1 (M:L) ratio using an aqueous ethanol solution. The complexes were characterized by FT-IR, UV–Vis, mass spectrometry, and elemental analysis (C, H, N). Additionally, 1H NMR spectroscopy was employed for Cd(II) complex. Antimicrobial activity of the ligand and its metal complexes against pathogenic bacteria (K. pneumoniae, E. coli, S. aureus, and S. epidermidis) and fungus (C. albicans) were evaluated
... Show MoreA Schiff base ligand (L) was synthesized via condensation of
A Schiff base ligand (L) was synthesized via condensation of