Preferred Language
Articles
/
vBaHH4cBVTCNdQwC5zhF
IMPROVEMENT OF SOIL USING GEOGRIDS TO RESIST ECCENTRIC LOADS.
...Show More Authors

This paper presents the results of experimental investigations to predict the bearing capacity of square footing on geogrid-reinforced loose sand by performing model tests. The effects of several parameters were studied in order to study the general behavior of improving the soil by using the geogrid. These parameters include the eccentricity value, depth of first layer of reinforcement, and vertical spacing of reinforcement layers. The results of the experimental work indicated that there was an optimum reinforcement embedment depth at which the bearing capacity was the highest when single-layer reinforcement was used. The increase of (z/B) (vertical spacing of reinforcement layer/width of footing) above 1.5 has no effect on the relative improvement for the soil and the relative improvement (%) of the reinforced soil can be predicated by using a simple equation

Publication Date
Tue Jan 01 2019
Journal Name
Plant Archives
Nitrification and urea hydrolysis in arid soil amended with different levels of bio-solid
...Show More Authors

Scopus
Publication Date
Wed Mar 27 2013
Journal Name
Engineering And Technology Journal
Total and Matric Suction in Unsaturated Soil with the Existence of Different Salts Content
...Show More Authors

Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Heave Behavior of Granular Pile Anchor-Foundation System (GPA-Foundation System) in Expansive Soil
...Show More Authors

Granular  Pile  Anchor  (GPA)  is  one  of  the  innovative  foundation  techniques,  devised  for mitigating heave of footing resulting from the expansive soils. This research attempts to study the heave behavior of (GPA-Foundation System) in expansive soil. Laboratory tests have been conducted on an experimental model in addition to a series of numerical modeling and analysis using the finite element package PLAXIS software. The effects of different parameters, such as (GPA) length (L) and diameter (D), footing diameter (B), expansive clay layer thickness (H) and presence of non-expansive clay are studied. The results proved the efficiency of (GPA) in reducing the heave of exp

... Show More
View Publication Preview PDF
Crossref (8)
Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Engineering
Evaluation of ANFIS and Regression Techniques in Estimating Soil Compression Index for Cohesive soils
...Show More Authors

Generally, direct measurement of soil compression index (Cc) is expensive and time-consuming. To save time and effort, indirect methods to obtain Cc may be an inexpensive option. Usually, the indirect methods are based on a correlation between some easier measuring descriptive variables such as liquid limit, soil density, and natural water content. This study used the ANFIS and regression methods to obtain Cc indirectly. To achieve the aim of this investigation, 177 undisturbed samples were collected from the cohesive soil in Sulaymaniyah Governorate in Iraq. Results of this study indicated that ANFIS models over-performed the Regression method in estimating Cc with R2 of 0.66 and 0.48 for both ANFIS and Regre

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Civil And Environmental Engineering
A Soil-Pile Response under Coupled Static-Dynamic Loadings in Terms of Kinematic Interaction
...Show More Authors
Abstract<p>Although the axial aptitude and pile load transfer under static loading have been extensively documented, the dynamic axial reaction, on the other hand, requires further investigation. During a seismic event, the pile load applied may increase, while the soil load carrying capacity may decrease due to the shaking, resulting in additional settlement. The researchers concentrated their efforts on determining the cause of extensive damage to the piles after the seismic event. Such failures were linked to discontinuities in the subsoil due to abrupt differences in soil stiffness, and so actions were called kinematic impact of the earthquake on piles depending on the outcomes of laboratory</p> ... Show More
Scopus (12)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Conference: 4th International Conference On Innovative Studies Of Contemporary Sciences
An anatomical and chemical comparison study of Epipremnum aureum cultivated in soil and soilless
...Show More Authors

The present study took up the different ways to cultivate the species Epipremnum aureum by two habitat water and soil and comber the anatomical features of the root, stem, and leaf. The results showed amazing significant anatomical features to the ecosystem. The root and stem anatomy showing decrease in all characters that studied but the leaf anatomy showing increase of palisade, spongy tissue thickness, midrib thickness, number of vessels in the xylem also the long and width of stomata of the soilless plants than soil ones. The upper epidermis empty from the stomata for the two treatment and the stoma diffuse in the lower epidermis, the type of it paracytic type. Also the total of flavonoids in the plant that were growth in soil reached 1

... Show More
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Bearing Capacity of Shallow Footing on Compacted Filling Dune Sand Over Reinforced Gypseous Soil
...Show More Authors

Existence of these soils, sometimes with high gypsum content, caused difficult problems to the buildings and strategic projects due to dissolution and leaching of gypsum by the action of waterflow through soil mass. In this research, a new technique is adopted to investigate the performance of replacement and geosynthetic reinforcement materials to improve the gypseous soil behavior through experimential set up manufactured loaclally specially for this work. A series of tests were carried out using steel container (600*600*500) mm. A square footing (100*100) mm was placed at the center of the top surface of the bed soil. The results showed that the most effective thickness for the dune sand layer with geotextile at the interface, within

... Show More
View Publication Preview PDF
Crossref (10)
Crossref
Publication Date
Sun Nov 15 2020
Journal Name
Anbar Journal Of Engineering Sciences
Numerical Modelling and Experimental Investigation of Water Distribution in Stratified Soil Under Subsurface Trickle
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Tue Jan 18 2022
Journal Name
Materials Science Forum
The Effect of Tidal Energies on the Materials Properties of the Soil at Southern Mesopotamia
...Show More Authors

The materials of soil were affected by multi reasons; such as human activities, floods, tidal waves, ... etc. The change of the soil contents could be measured through different indexes; such as electric conductivities, salinity, concentration of the heavy elements, and concentration of essential elements ... etc. The land cover is affected by natural influences, like tidal energy, which plays a negative role in the salinization of land adjacent to the coasts, causing a problem for soils in all its details represented in changing of the dissolved elements in soil. One of the most important natural factors that cause soil salinity is human activity in all its forms, and one of the most important causes of salinity is the phenomenon o

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2014
Journal Name
Journal Of Engineering Geology And Hydrogeology
Impact of Asphalt Stabilization on Deformation Behavior of Reinforced Soil Embankment Model under Cyclic Loading
...Show More Authors

Gypseous soil, which covers vast area in west, middle, east and south west regions of Iraq exhibit acceptable strength properties when dry, but it is weak and collapsible when it comes in touch with moisture from rain or other sources. When such weak soil is adopted for earth reinforced embankment construction, it may exhibit hazardous situation. Gypseous soil was investigated for the optimum liquid asphalt requirements of both cutback and emulsion using the one-dimensional unconfined compression strength test. The optimum fluid content was 13% (7% of cutback with 6% water content), and 17% (9% of emulsion with 8% water content). A laboratory model box of 50x50x25 cm was used as a representative of embankment; soil or asphalt stabilize

... Show More
View Publication
Crossref (3)
Crossref