Hydrochloric acid (HCl) is a substance that is frequently utilized in industrial operations for important tasks such as chemical cleaning and pickling metallic surfaces.Therefore, the corrosion inhibition ability of three newly synthesized quinazoline derivatives namely, 3-allyl-2-(propylthio) quinazolin-4(3H)-one) (APQ), (3-allyl-2-(allylthio) quinazolin-4(3H)-one) (AAQ), (3-allyl- 2-( Prop -2-yn -1-ylthio) Quinazolin - 4 (3H) - one) (AYQ) were theoretically determined and these compounds were characterized using Fourier Transform Infra-Red (FTIR) and 1H and 13C Nuclear Magnetic Resonance (NMR) spectroscopic. A series of quantum chemical properties of these derivatives: EHOMO, ELUMO, energy gap (ΔE),dipole moment (μ), hardness (η), softness (Ϭ), absolute electronegativity (χ), fractions for electron transferred (ΔN), the ionization potential (I), (TE) and total energy were calculated. The obtained results of all quinazoline derivatives (APQ,AAQ,andAYQ) show almost the same corrosion inhibition with excellent efficiency. Density function theory (DFT) was used to investigate the relationship between the molecular structures and inhibitory efficacies of three quinazoline derivatives. The results of the analysis and measurement of Egap values revealed that the compound AYQ had a modest Egap of 4.999 eV and that strong values of Egap suggest that it will be easier to remove one electron from the HOMO orbital and deposit it in the LUMO orbital
Dielectric barrier discharges (DBD) can be described as the presence of contact with the discharge of one or more insulating layers located between two cylindrical or flat electrodes connected to an AC/pulse dc power supply. In this work, the properties of the plasma generated by dielectric barrier discharge (DBD) system without and with a glass insulator were studied. The plasma was generated at a constant voltage of 4 kV and fixed distance between the electrodes of 5 mm, and with a variable flow rate of argon gas (0.5, 1, 1.5, 2 and 2.5) L/min. The emission spectra of the DBD plasmas at different flow rates of argon gas have been recorded. Boltzmann plot method was used to calculate the plasma electron temperature (Te), and Stark broadeni
... Show MoreThis paper proposes a novel finite-time generalized proportional integral observer (FTGPIO) based a sliding mode control (SMC) scheme for the tracking control problem of high order uncertain systems subject to fast time-varying disturbances. For this purpose, the construction of the controller consists of two consecutive steps. First, the novel FTGPIO is designed to observe unmeasurable plant dynamics states and disturbance with its higher time derivatives in finite time rather than infinite time as in the standard GPIO. In the FTGPO estimator, the finite time convergence rate of estimations is well achieved, whereas the convergence rate of estimations by classical GPIO is asymptotic and slow. Secondly, on the basis of the finite and fast e
... Show MoreDeveloping a new adaptive satellite images classification technique, based on a new way of merging between regression line of best fit and new empirical conditions methods. They are supervised methods to recognize different land cover types on Al habbinya region. These methods should be stand on physical ground that represents the reflection of land surface features. The first method has separated the arid lands and plants. Empirical thresholds of different TM combination bands; TM3, TM4, and TM5 were studied in the second method, to detect and separate water regions (shallow, bottomless, and very bottomless). The Optimum Index Factor (OIF) is computed for these combination bands, which realized
... Show MoreAbstract
Metal cutting processes still represent the largest class of manufacturing operations. Turning is the most commonly employed material removal process. This research focuses on analysis of the thermal field of the oblique machining process. Finite element method (FEM) software DEFORM 3D V10.2 was used together with experimental work carried out using infrared image equipment, which include both hardware and software simulations. The thermal experiments are conducted with AA6063-T6, using different tool obliquity, cutting speeds and feed rates. The results show that the temperature relatively decreased when tool obliquity increases at different cutting speeds and feed rates, also it
... Show MoreIn this paper, subclasses of the function class ∑ of analytic and bi-univalent functions associated with operator L_q^(k, λ) are introduced and defined in the open unit disk △ by applying quasi-subordination. We obtain some results about the corresponding bound estimations of the coefficients a_(2 ) and a_(3 ).
The interactions of drug amoxicillin with maltose or galactose solutions with a variation of temperature have been discussed by taking in the volumetric and viscometric procedures. Physical properties [densities (ρ) and viscosities (η)] of amoxicillin (AMOX) aqueous solutions and aqueous solutions of two type saccharides (maltose and galactose 0.05m) have been measured at T = (298.15, 303.15 and 308.15) K under atmospheric pressure. The apparent molar volume (ϕv cm3mole-1) has been evaluated from density data and fitted to a Redlich-Mayer equation. The empirical parameters of the Mayer-Redlich equation and apparent molar volume at infinite dilution Ø°v were explicated in terms of interactions from type solute-solvent and solute
... Show MoreGeologic modeling is the art of constructing a structural and stratigraphic model of a reservoir from analyses and interpretations of seismic data, log data, core data, etc. [1].
A static reservoir model typically involves four main stages, these stages are Structural modeling, Stratigraphic modeling, Lithological modeling and Petrophysical modeling [2].
Ismail field is exploration structure, located in the north Iraq, about 55 km north-west of Kirkuk city, to the north-west of the Bai Hassan field, the distance between the Bai Hassan field and Ismael field is about one kilometer [3].
Tertiary period reservoir sequences (Main Limestone), which comprise many economica
... Show MoreCarbonate matrix stimulation technology has progressed tremendously in the last decade through creative laboratory research and novel fluid advancements. Still, existing methods for optimizing the stimulation of wells in vast carbonate reservoirs are inadequate. Consequently, oil and gas wells are stimulated routinely to expand production and maximize recovery. Matrix acidizing is extensively used because of its low cost and ability to restore the original productivity of damaged wells and provide additional production capacity. The Ahdeb oil field lacks studies in matrix acidizing; therefore, this work provided new information on limestone acidizing in the Mishrif reservoir. Moreover, several reports have been issued on the difficulties en
... Show MoreThis paper deals with a Twin Rotor Aerodynamic System (TRAS). It is a Multi-Input Multi-Output (MIMO) system with high crosscoupling between its two channels. It proposes a hybrid design procedure that combines frequency response and root locus approaches. The proposed controller is designated as PID-Lead Compensator (PIDLC); the PID controller was designed in previous work using frequency response design specifications, while the lead compensator is proposed in this paper and is designed using the root locus method. A general explicit formula for angle computations in any of the four quadrants is also given. The lead compensator is designed by shifting the dominant closed-loop poles slightly to the left in the s-plane. This has the effect
... Show More