Theresearch took the spatial autoregressive model: SAR and spatial error model: SEM in an attempt to provide a practical evident that proves the importance of spatial analysis, with a particular focus on the importance of using regression models spatial andthat includes all of them spatial dependence, which we can test its presence or not by using Moran test. While ignoring this dependency may lead to the loss of important information about the phenomenon under research is reflected in the end on the strength of the statistical estimation power, as these models are the link between the usual regression models with time-series models. Spatial analysis had been applied on IraqHousehold Socio-Economic Survey: IHSES 2012. To measure the preference models used in the research was the use of such standards compared: Root Mean Squares Error: RMSE,Mean Absolute Percentage Error: MAPEand , and Adjusted determinant coefficient: with different weight matrices (binary and modified) take into account the effect of neighborhoods of districts.
The Umm Al-Naaj Marsh was chosen in Maysan province, and it is one of the sections of Mar Al-Hawza, which is one of the most prominent Iraqi marshes in the south. The marshes are located between latitudes 30 35 and 32 45 latitudes and longitudes 13 46 and 48 00. The area of the study area is 76479.432142 hectares to evaluate soil quality and health index and their spatial distribution based on measuring physical, chemical, biological and fertility traits and calculating the total quality index for those characteristics. Using an auger drilling machine, we collected 50 randomly selected surface samples, evenly distributed across the study region, from Al-Aq 0.0–0.30 m, noting their precise locations along the way. Soil health and quality w
... Show MoreSurvival analysis is one of the types of data analysis that describes the time period until the occurrence of an event of interest such as death or other events of importance in determining what will happen to the phenomenon studied. There may be more than one endpoint for the event, in which case it is called Competing risks. The purpose of this research is to apply the dynamic approach in the analysis of discrete survival time in order to estimate the effect of covariates over time, as well as modeling the nonlinear relationship between the covariates and the discrete hazard function through the use of the multinomial logistic model and the multivariate Cox model. For the purpose of conducting the estimation process for both the discrete
... Show MoreIn this paper, the fuzzy logic and the trapezoidal fuzzy intuitionistic number were presented, as well as some properties of the trapezoidal fuzzy intuitionistic number and semi- parametric logistic regression model when using the trapezoidal fuzzy intuitionistic number. The output variable represents the dependent variable sometimes cannot be determined in only two cases (response, non-response)or (success, failure) and more than two responses, especially in medical studies; therefore so, use a semi parametric logistic regression model with the output variable (dependent variable) representing a trapezoidal fuzzy intuitionistic number.
the model was estimated on simulati
... Show MoreIn this research The study of Multi-level model (partial pooling model) we consider The partial pooling model which is one Multi-level models and one of the Most important models and extensive use and application in the analysis of the data .This Model characterized by the fact that the treatments take hierarchical or structural Form, in this partial pooling models, Full Maximum likelihood FML was used to estimated parameters of partial pooling models (fixed and random ), comparison between the preference of these Models, The application was on the Suspended Dust data in Iraq, The data were for four and a half years .Eight stations were selected randomly among the stations in Iraq. We use Akaik′s Informa
... Show MoreIn this research The study of Multi-level model (partial pooling model) we consider The partial pooling model which is one Multi-level models and one of the Most important models and extensive use and application in the analysis of the data .This Model characterized by the fact that the treatments take hierarchical or structural Form, in this partial pooling models, Full Maximum likelihood FML was used to estimated parameters of partial pooling models (fixed and random ), comparison between the preference of these Models, The application was on the Suspended Dust data in Iraq, The data were for four and a half years .Eight stations were selected randomly among the stations in Iraq. We use Akaik′s Informa
... Show MoreThe last few years witnessed great and increasing use in the field of medical image analysis. These tools helped the Radiologists and Doctors to consult while making a particular diagnosis. In this study, we used the relationship between statistical measurements, computer vision, and medical images, along with a logistic regression model to extract breast cancer imaging features. These features were used to tell the difference between the shape of a mass (Fibroid vs. Fatty) by looking at the regions of interest (ROI) of the mass. The final fit of the logistic regression model showed that the most important variables that clearly affect breast cancer shape images are Skewness, Kurtosis, Center of mass, and Angle, with an AUCROC of
... Show MoreThis paper considers and proposes new estimators that depend on the sample and on prior information in the case that they either are equally or are not equally important in the model. The prior information is described as linear stochastic restrictions. We study the properties and the performances of these estimators compared to other common estimators using the mean squared error as a criterion for the goodness of fit. A numerical example and a simulation study are proposed to explain the performance of the estimators.
The purpose of this paper is to model and forecast the white oil during the period (2012-2019) using volatility GARCH-class. After showing that squared returns of white oil have a significant long memory in the volatility, the return series based on fractional GARCH models are estimated and forecasted for the mean and volatility by quasi maximum likelihood QML as a traditional method. While the competition includes machine learning approaches using Support Vector Regression (SVR). Results showed that the best appropriate model among many other models to forecast the volatility, depending on the lowest value of Akaike information criterion and Schwartz information criterion, also the parameters must be significant. In addition, the residuals
... Show MoreCeftriaxone sodium were one of the widely antibacterial drugs used. Azo dye derivatization of diazonium salt that formed via the reaction between ceftriaxone with hydrochloric acid and sodium nitrite was developed for the on-research drug analysis then coupling with each one 2,5-dimethylphenol (2,5-DMP) and 4-tertbutylphenol (4-TBP) respectively in the alkaline media. The developed diazonium coupling methods include an optimization study. The results show a limit of detection and limit of quantification 0.482, 0.284 µg/mL, and 1.607, 0.945 µg/mL using 2,5-DMP and 4-TBP reagents respectively. Moreover, the recovery % obtained was 100.89%, and 103.37% at linear concentration range 3.0 – 50, and 10 – 30 µg/mL, with mo
... Show More