A flexible pavement structure usually comprises more than one asphalt layer, with varying thicknesses and properties, in order to carry the traffic smoothly and safely. It is easy to characterize each asphalt layer with different tests to give a full description of that layer; however, the performance of the whole; asphalt structure needs to be properly understood. Typically, pavement analysis is carried out using multi-layer linear elastic assumptions, via equations and computer programs such as KENPAVE, BISAR, etc. These types of analysis give the response parameters including stress, strain, and deflection at any point under the wheel load. This paper aims to estimate the equivalent Resilient Modulus (MR) of the asphalt concrete layers within a pavement structure by using their individual MR values. To achieve this aim, eight samples were cored from Iraqi Expressway no. 1; they had three layers of asphalt and were tested to obtain the MR of each core by using the uniaxial repeated loading test at 25 and 40 °C. The samples were then cut to separate each layer individually and tested for MR at the same testing temperatures; thus, a total of 60 resilient modulus tests were conducted. A new approach was introduced to estimate the equivalent MR as a function of the MR value for each layer. The results matched the values obtained by KENPAVE analysis.
The present study deals with the experimental investigation of buried concrete pipes. Concrete pipes are buried in loose and dense conditions of gravelly sand soil and subjected to different surface loadings to study the effects of the backfill compaction on the pipe. The experimental investigation was accomplished using full-scale precast unreinforced concrete pipes with 300 mm internal diameter tested in a laboratory soil box test facility set up for this study. Two loading platforms are used namely, uniform loading platform and patch loading platform. The wheel load was simulated through patch loading platform which have dimensions of 254 mm *508 mm, which is used by AASHTO to model the wheel load of a HS20 truck. The pipe-soil system
... Show MoreIndustrial buildings usually are designed to sustain several types of load systems, such as dead, live, and dynamic loads (especially the harmonic load produced by rotary motors). In general, these buildings require high-strength structural elements to carry the applied loads. Moreover, Reactive Powder Concrete (RPC) has been used for this purpose because of its excellent mechanical strength and endurance. Therefore, this study provides an experimental analysis of the structural behaviors of reinforced RPC beams under harmonic loads. The experimental program consisted of testing six simply supported RPC beams with lengths of 1500 mm, widths of 150 mm, and thicknesses of 200 mm under harmonic loading with varied frequencies between 1
... Show MoreThis investigation presents an experimental and analytical study on the behavior of reinforced concrete deep beams before and after repair. The original beams were first loaded under two points load up to failure, then, repaired by epoxy resin and tested again. Three of the test beams contains shear reinforcement and the other two beams have no shear reinforcement. The main variable in these beams was the percentage of longitudinal steel reinforcement (0, 0.707, 1.061, and 1.414%). The main objective of this research is to investigate the possibility of restoring the full load carrying capacity of the reinforced concrete deep beam with and without shear reinforcement by using epoxy resin as the material of repair. All be
... Show MoreOne of the artificial lightweight aggregates with a wide range of applications is Lightweight Expanded Clay Aggregate. Clay is utilized in the production of light aggregates. Using leftover clay from significant infrastructure development projects to manufacture lightweight aggregates has a favorable environmental impact. This research examines the expanded clay aggregate production process and the impact of processing parameters on its physical and mechanical qualities. It also looks at secondary components that can be used to improve the qualities of concrete with expanded clay aggregates. The effect of the quantity of expanded clay aggregate on the fresh, hardened, and durability qualities of concrete is also studied.
... Show MoreThis study investigates the possibility of using waste plastic as one of the components of expired lead-acid batteries to produce lightweight concrete. Different percentages of lead-acid battery plastic were used in the production of lightweight concrete. The replacements were (70, 80 and 100%) by volume of the fine and coarse aggregate. Results demonstrated that a reduction of approximately 23.6% to 35% in the wet density was observed when replacement of 70% to 100% of the natural aggregate by lead-acid battery plastic. Also, the compressive strength decreased slightly with the increase in plastic content at different curing ages of 7, 28, 60, 90, 120 days. The lowest value of compressive strength was (20.7 MPa) for (wa
... Show MoreThe study focused on examining the behavior of six concrete beams that were reinforced with glass fiber-reinforced polymer (GFRP) bars to evaluate their performance in terms of their load-carrying capacity, deflection, and other mechanical properties. The experimental investigation would provide insights into the feasibility and effectiveness of GFRP bars as an alternative to traditional reinforcement materials like steel bars in concrete structures. The GFRP bars were used in both the longitudinal and transverse directions. Each beam in the study shared the following specifications: an overall length of 2,400 mm, a clear span of 2,100 mm, and a rectangular cross-section measuring
The behavior of externally prestressed composite beams under short term loading has been studied. A computer program developed originally by Oukaili to evaluate curvature is modified to evaluate the deflection of prestressed composite beam under flexural load. The analysis model based on the deformation compatibility of entire structure that allows to determine the full history of strain and stress distribution along cross section depth, deflection and stress increment in the external tendons .
The evaluation of curvatures for the composite beam involves iterations for computing the strains vectors at each node at any loading stage. The stress increment determined using equations depended on the member deflection at points of connecti
Industrial buildings usually are designed to sustain several types of load systems, such as dead, live, and dynamic loads (especially the harmonic load produced by rotary motors). In general, these buildings require high-strength structural elements to carry the applied loads. Moreover, Reactive Powder Concrete (RPC) has been used for this purpose because of its excellent mechanical strength and endurance. Therefore, this study provides an experimental analysis of the structural behaviors of reinforced RPC beams under harmonic loads. The experimental program consisted of testing six simply supported RPC beams with lengths of 1500 mm, widths of 150 mm, and thicknesses of 200 mm under harmonic loading with varied frequencies between 1
... Show MoreDuring the last two decades, nanomaterial application has gained a significant attraction into asphalt technology due to their effect in enhancing asphalt binder improving the asphaltic mixture. This study will modify the asphalt binder with two different nano types, nano SiO2 and CaCO3, at levels ranging from 1% to 7%. The resulting optimum nano-modified Asphalt will be subject to a series of rheological tests, including dynamic shear rheometer (DSR), Viscosity, and bending beam rheometer (BBR) to determine asphalt binder sensitivity towards low-medium-high temperature range. Results indicate that both nano types improved the physical characteristics of Asphalt, and 5% by weight of Asphalt was suggested as a reasonable dosage of nano-SiO2
... Show More