هناك دائما حاجة إلى طريقة فعالة لتوليد حل عددي أكثر دقة للمعادلات التكاملية ذات النواة المفردة أو المفردة الضعيفة لأن الطرق العددية لها محدودة. في هذه الدراسة ، تم حل المعادلات التكاملية ذات النواة المفردة أو المفردة الضعيفة باستخدام طريقة متعددة حدود برنولي. الهدف الرئيسي من هذه الدراسة هو ايجاد حل تقريبي لمثل هذه المشاكل في شكل متعددة الحدود في سلسلة من الخطوات المباشرة. أيضا ، تم افتراض أن مقام النواة لن يكون صفرا أبدا أو أن يكون له قيمة عقدية بسبب اختيارالعقد المحددة لمتغيري النواة الوحيدين. مع متعددات حدود برنولي من الدرجة 4 و 8 كمثال على ذلك، يوفر النهج الحالي حلا قريبا جدا من الحل الدقيق في أمثلة الاختبار. بينما. يثبت الحجم المتواضع جدا للأخطاء في أمثلة الاختبار فعالية الاستراتيجية الحالية. أيضا ، فإن السهولة التي يمكن بها تنفيذ برنامج الكمبيوتر تجعل هذه التقنية فعالة للغاية. هدف آخر هو تحديد كفاءة الطريقة المقترحة من خلال مقارنتها بأساليب مختلفة. يظهر أن الحل التقريبي للمعادلات التكاملية ذات النواة المفردة أو المفردة الضعيفة يتقارب بشدة مع الحل المضبوط للمعادلات باستخدام متعددة حدود برنولي وهو متفوق على تلك الموجودة في الأساليب الأخرى المذكورة. هذا يضمن الأصالة والدقة العالية للطريقة المقترحة. كذلك تمت مناقشة تقارب الحل. تم تنفيذ البرامج باستخدام برنامج ال MATLAB النسخة 2018a .
This paper is concerned with the solution of the nanoscale structures consisting of the with an effective mass envelope function theory, the electronic states of the quantum ring are studied. In calculations, the effects due to the different effective masses of electrons in and out the rings are included. The energy levels of the electron are calculated in the different shapes of rings, i.e., that the inner radius of rings sensitively change the electronic states. The energy levels of the electron are not sensitively dependent on the outer radius for large rings. The structures of quantum rings are studied by the one electronic band Hamiltonian effective mass approximati
... Show MoreIn this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using
In this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using
In this paper, we focus on designing feed forward neural network (FFNN) for solving Mixed Volterra – Fredholm Integral Equations (MVFIEs) of second kind in 2–dimensions. in our method, we present a multi – layers model consisting of a hidden layer which has five hidden units (neurons) and one linear output unit. Transfer function (Log – sigmoid) and training algorithm (Levenberg – Marquardt) are used as a sigmoid activation of each unit. A comparison between the results of numerical experiment and the analytic solution of some examples has been carried out in order to justify the efficiency and the accuracy of our method.
... Show More
The problem of Bi-level programming is to reduce or maximize the function of the target by having another target function within the constraints. This problem has received a great deal of attention in the programming community due to the proliferation of applications and the use of evolutionary algorithms in addressing this kind of problem. Two non-linear bi-level programming methods are used in this paper. The goal is to achieve the optimal solution through the simulation method using the Monte Carlo method using different small and large sample sizes. The research reached the Branch Bound algorithm was preferred in solving the problem of non-linear two-level programming this is because the results were better.
In this paper, we proved the existence and uniqueness of the solution of nonlinear Volterra fuzzy integral equations of the second kind.
In this paper we use non-polynomial spline functions to develop numerical methods to approximate the solution of 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of these method, and to compare the computed results with other known methods.
An Alternating Directions Implicit method is presented to solve the homogeneous heat diffusion equation when the governing equation is a bi-harmonic equation (X) based on Alternative Direction Implicit (ADI). Numerical results are compared with other results obtained by other numerical (explicit and implicit) methods. We apply these methods it two examples (X): the first one, we apply explicit when the temperature .