Background: Bilastine (BLA) is a second-generation H1 antihistamine used to treat allergic rhinoconjunctivitis. Because of its limited solubility, it falls under class II of the Biopharmaceutics Classification System (BSC). The solid dispersion (SD) approach significantly improves the solubility and dissolution rate of insoluble medicines. Objective: To improve BLA solubility and dissolution rate by formulating a solid dispersion in the form of effervescent granules. Methods: To create BLA SDs, polyvinylpyrrolidone (PVP K30) and poloxamer 188 (PLX188) were mixed in various ratios (1:5, 1:10, and 1:15) using the kneading technique. All formulations were evaluated based on percent yield, drug content, and saturation solubility. The formulae with the greatest solubility enhancement were subjected to in vitro dissolution studies, Fourier transform infrared, and thermal analysis to study drug crystallinity and drug-polymer interactions. The best SD formula was made as effervescent granules using wet granulation and tested further. Results: The SD3 formula, which contained PVP K30 in a 1:15 ratio, had the highest solubility and release. In phosphate buffer (pH 6.8), over 88.43% of the BLA was released within the first 15 minutes. The optimum formula's effervescent granules demonstrated excellent flow qualities, a disintegration time of 87 seconds, an acceptable pH of 5.9, and 9.7 mg of BLA dissolved in the first 5 minutes. Conclusions: BLA dissolution can be improved via the solid dispersion technique, allowing for successful effervescent granule formulation.
Ondansetron HCl (OND) is a potent antiemetic drug used for control of nausea and vomiting associated with cancer chemotherapy. It exhibits only 60 – 70 % of oral bioavailability due to first pass metabolism and has a relative short half-life of 3-5 hours. Poor bioavailability not only leads to the frequent dosing but also shows very poor patient adherence. Hence, in the present study an approach has been made to develop OND nanoparticles using eudragit® RS100 and eudragit® RL100 polymer to control release of OND for transdermal delivery and to improve patient compliance.
Six formulas of OND nanoparticles were prepared using nanoprecipitation technique. The particles sizes and zeta potential were measured
... Show MoreThe objective of this study is to determine the efficacy of class V Er:YAG laser (2940 nm) cavity preparation and conventional bur cavity preparation regarding Intrapulpal temperature rise during cavity preparation in extracted human premolar teeth. Twenty non carious premolar teeth extracted for orthodontic purposes were used and class V cavity preparation was applied both buccal and lingual sides for each tooth .Samples were equally grouped into two major groups according to cavity depth (1mm and 2mm). Each major group was further subdivided into two subgroupsof ten teeth for each (twenty cavities for each subgroup). TwinlightEr:YAG laser (2940 nm) with 500mJ pulse energy, P.R.R of 10 Hz and 63.69 J/cm2 energy density was used. The ana
... Show MoreOne of the important units in Sharq Dijla Water Treatment Plant (WTP) first and second extensions are the alum solution preparation and dosing unit. The existing operation of this unit accomplished manually starting from unloading the powder alum in the preparation basin and ending by controlling the alum dosage addition through the dosing pumps to the flash mix chambers. Because of the modern trend of monitoring and control the automatic operation of WTPs due to the great benefits that could be gain from optimum equipment operation, reducing the operating costs and human errors. This study deals with how to transform the conventional operation to an automatic monitoring and controlling system depending on a Programmable
... Show MoreIn this study, manganese dioxide (MnO₂) nanoparticles (NPs) were synthesized via the hydrothermal method and utilized for the adsorption of Janus green dye (JG) from aqueous solutions. The effects of MnO₂ NPs on kinetics and diffusion were also analyzed. The synthesized NPs were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), and Fourier-transform infrared spectroscopy (FT-IR), with XRD confirming the nanoparticle size of 6.23 nm. The adsorption kinetics were investigated using three models: pseudo-first-order (PFO), pseudo-second-order (PSO), and the intraparticle diffusion model. The PSO model provided the best fit (R² = 0.999), indicating that the adsorpti
... Show More