Background: Bilastine (BLA) is a second-generation H1 antihistamine used to treat allergic rhinoconjunctivitis. Because of its limited solubility, it falls under class II of the Biopharmaceutics Classification System (BSC). The solid dispersion (SD) approach significantly improves the solubility and dissolution rate of insoluble medicines. Objective: To improve BLA solubility and dissolution rate by formulating a solid dispersion in the form of effervescent granules. Methods: To create BLA SDs, polyvinylpyrrolidone (PVP K30) and poloxamer 188 (PLX188) were mixed in various ratios (1:5, 1:10, and 1:15) using the kneading technique. All formulations were evaluated based on percent yield, drug content, and saturation solubility. The formulae with the greatest solubility enhancement were subjected to in vitro dissolution studies, Fourier transform infrared, and thermal analysis to study drug crystallinity and drug-polymer interactions. The best SD formula was made as effervescent granules using wet granulation and tested further. Results: The SD3 formula, which contained PVP K30 in a 1:15 ratio, had the highest solubility and release. In phosphate buffer (pH 6.8), over 88.43% of the BLA was released within the first 15 minutes. The optimum formula's effervescent granules demonstrated excellent flow qualities, a disintegration time of 87 seconds, an acceptable pH of 5.9, and 9.7 mg of BLA dissolved in the first 5 minutes. Conclusions: BLA dissolution can be improved via the solid dispersion technique, allowing for successful effervescent granule formulation.
Pure and doped barium titanate with Mg2+ ion at two molar ratios x= (5%, 10%) mol. has been synthesized by solid state reaction technique. The powders sintered at two temperatures (1000 °C and 1400 °C). An XRD technique was used in order to study the crystal structure of pure and doped barium titanate, which confirmed the formation of the tetragonal phase of BaTiO3, and then calculate the lattice parameters of pure and doped barium titanate, the addition of magnesium ion Mg2+ can lead to decreases lattice parameters.
The composites were manufactured and study the effect of addition of filler (nanoparticles SiO2 treated with silane) at different weight ratios (1, 2, 3, 4 and 5) %, on electrical, mechanical and thermal properties. Materials were mixed with each other using an ultrasound, and then pour the mixture into the molds to suit all measurements. The electrical characteristics were studied within a range of frequencies (50-1M) Hz at room temperature, where the best results were shown at the fill ratio (1%), and thermal properties at (X=3 %), the mechanical properties at the filler ratio (2%).
Pure and doped barium titanate with Mg2+ ion at two molar ratios x= (5%, 10%) mol. has been synthesized by solid state reaction technique. The powders sintered at two temperatures (1000 °C and 1400 °C). An XRD technique was used in order to study the crystal structure of pure and doped barium titanate, which confirmed the formation of the tetragonal phase of BaTiO3, and then calculate the lattice parameters of pure and doped barium titanate, the addition of magnesium ion Mg2+ can lead to decreases lattice parameters.
In this study a new composite material have been prepared and characterized through polymerization of ethylene glycol located between the Bentonite layers with phthalic anhydride. The results showed that the polymer binds with the structure of clay through hydrogen bonding also the polymerization process led to shatter of the three-dimension crystal structure of the clay and isolating layers in the form of nano-scale two-dimensional sheets, the polymer growth around the clay isolated layers work to increase the size particles at microscopic scale. &
... Show MorePolyaniline organic Semiconductor polymer was prepared by oxidation polymerization by adding hydrochloric acid concentration of 0.1M and potassium per sulfate concentration of 0.2M to 0.1M of aniline at room temperature, the polymer was deposited at glass substrate, the structural and optical properties were studies through UV-VIS, IR, XRD measurements, films have been operated as a sensor of vapor H2SO4 and HCl acids.
In this study NiO - CoO bimetallic catalysts are prepared with two Ni/Co ratios (70:30 and 80: 20) using the precipitation method of nitrate salts. The effects of Ni /Co ratio and preparation methods on the catalyst are analyzed by using different characterization techniques, i.e. atomic absorption (AA) , XRD, surface area and pore volume measurements according to the BET method . The results indicate that the best catalyst is the one containing the percentage of Ni :Co ( 70 : 30 ). Experiments indicate that the optimal conditions to prepare catalyst are stirring for three hours at a temperature of 60oC of the preparation , pH= (8-9) , calcination temperature at 400oC for two hours
... Show MorePulsatile drug delivery systems are time-controlled dosage forms which are designed to release the active pharmaceutical ingredient after a predetermined lag time to synchronize the disease circadian rhythm. A migraine shows circadian rhythm with a marked increase in attacks between 6 a.m. and 8 a.m.
Sumatriptan is a selective agonist at serotonin (5-Hydroxy tryptamine1 (5-HT1))receptors, is an effective treatment for acute migraine attacks.
The aim of this work is to prepare time-controlled press-coated tablet with a lag time of 5.45 hrs.
Six formulas of fast dissolving core tablets and three formulas of press-coated tablets were prepared by using direct compression method using different variables to prepa
... Show MoreThe purified prepared compounds were identified through different methods of identification i.e, I.R, UV-vi^ble-spectroscopy in addition to (coloured tests) Calculation of the sum of OH groups. TLC techniques were also used to test the purity and the speed ofthe rate of flow (RF).
This work concerns the thermal and sound insulation as well as the mechanical properties of polymer matrix composite reinforced with glass fibers. These fibers may have dangerous effect during handling, for example the glass fibers might cause some damage to the eyes, lungs and even skin. For this reason the present work, investigates the behavior of polymer composite reinforced with natural fibers (Plant fibers) as replacement to glass fibers. Unsaturated Polyester resin was used as matrix material reinforced with two types of fibers, one of them is artificial (Glass fibers) and the other type is natural (Jute, Fronds Palm and Reed Fibers) by hand lay-up technique. All fibers are untreated with any chemical solvent. The Percentage of mi
... Show More