Authentication is the process of determining whether someone or something is, in fact, who or what it is declared to be. As the dependence upon computers and computer networks grows, the need for user authentication has increased. User’s claimed identity can be verified by one of several methods. One of the most popular of these methods is represented by (something user know), such as password or Personal Identification Number (PIN). Biometrics is the science and technology of authentication by identifying the living individual’s physiological or behavioral attributes. Keystroke authentication is a new behavioral access control system to identify legitimate users via their typing behavior. The objective of this paper is to provide user authentication based on keystroke dynamic in order to avoid un authorized user access to the system. Naive Bayes Classifier (NBC) is applied for keystroke authentication using unigraph and diagraph keystroke features. The unigraph Dwell Time (DT), diagraph Down-Down Time (DDT) features, and combination of (DT and DDT) are used. The results show that the combination of features (DT and DDT) produces better results with low error rate as compared with using DT or DDT alone.
In this paper, we investigate the behavior of the bayes estimators, for the scale parameter of the Gompertz distribution under two different loss functions such as, the squared error loss function, the exponential loss function (proposed), based different double prior distributions represented as erlang with inverse levy prior, erlang with non-informative prior, inverse levy with non-informative prior and erlang with chi-square prior.
The simulation method was fulfilled to obtain the results, including the estimated values and the mean square error (MSE) for the scale parameter of the Gompertz distribution, for different cases for the scale parameter of the Gompertz distr
... Show MoreDue to the fact that living organisms do not exist individually, but rather exist in clusters interacting with each other, which helps to spread epidemics among them. Therefore, the study of the prey-predator system in the presence of an infectious disease is an important topic because the disease affects the system's dynamics and its existence. The presence of the hunting cooperation characteristic and the induced fear in the prey community impairs the growth rate of the prey and therefore affects the presence of the predator as well. Therefore, this research is interested in studying an eco-epidemiological system that includes the above factors. Therefore, an eco-epidemiological prey-predator model incorporating predation fear and
... Show MoreWe focus on studying the dynamics of bulk semiconductor optical amplifiers and their effects on the saturation region for short pulse that differ, however there is the same unsaturated gain for both dynamics. Parameters like current injection, fast dynamics present by carrier heating (CH), and spectra hole burning (SHB) are studied for regions that occur a response to certain dynamics. The behavior of the saturation region is found to be responsible for phenomena such as recovery time and chirp for the pulse under study.
Crop production is reduced by insufficient and/or excess soil water, which can significantly decrease plant growth and development. Therefore, conservation management practices such as cover crops (CCs) are used to optimize soil water dynamics, since CCs can conserve soil water. The objective of this study was to determine the effects of CCs on soil water dynamics on a corn (
Retinopathy of prematurity (ROP) can cause blindness in premature neonates. It is diagnosed when new blood vessels form abnormally in the retina. However, people at high risk of ROP might benefit significantly from early detection and treatment. Therefore, early diagnosis of ROP is vital in averting visual impairment. However, due to a lack of medical experience in detecting this condition, many people refuse treatment; this is especially troublesome given the rising cases of ROP. To deal with this problem, we trained three transfer learning models (VGG-19, ResNet-50, and EfficientNetB5) and a convolutional neural network (CNN) to identify the zones of ROP in preterm newborns. The dataset to train th
Frequency equations for rectangular plate model with and without the thermoelastic effect for the cases are: all edges are simply supported, all edges are clamped and two opposite edges are clamped others are simply supported. These were obtained through direct method for simply supported ends using Hamilton’s principle with minimizing Ritz method to total energy (strain and kinetic) for the rest of the boundary conditions. The effect of restraining edges on the frequency and mode shape has been considered. Distributions temperatures have been considered as a uniform temperature the effect of developed thermal stresses due to restrictions of ends conditions on vibration characteristics of a plate with different
... Show MoreIn data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.