Preferred Language
Articles
/
uxcLPo8BVTCNdQwC3WT9
Keystroke Dynamics Authentication based on Naïve Bayes Classifier
...Show More Authors

Authentication is the process of determining whether someone or something is, in fact, who or what it is declared to be. As the dependence upon computers and computer networks grows, the need for user authentication has increased. User’s claimed identity can be verified by one of several methods. One of the most popular of these methods is represented by (something user know), such as password or Personal Identification Number (PIN). Biometrics is the science and technology of authentication by identifying the living individual’s physiological or behavioral attributes. Keystroke authentication is a new behavioral access control system to identify legitimate users via their typing behavior. The objective of this paper is to provide user authentication based on keystroke dynamic in order to avoid un authorized user access to the system. Naive Bayes Classifier (NBC) is applied for keystroke authentication using unigraph and diagraph keystroke features. The unigraph Dwell Time (DT), diagraph Down-Down Time (DDT) features, and combination of (DT and DDT) are used. The results show that the combination of features (DT and DDT) produces better results with low error rate as compared with using DT or DDT alone.

Publication Date
Mon Apr 17 2017
Journal Name
Wireless Personal Communications
ITPMAP: An Improved Three-Pass Mutual Authentication Protocol for Secure RFID Systems
...Show More Authors

View Publication
Scopus (9)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Wed May 17 2023
Journal Name
International Journal Of Computational Intelligence Systems
Prediction of ROP Zones Using Deep Learning Algorithms and Voting Classifier Technique
...Show More Authors
Abstract<p>Retinopathy of prematurity (ROP) can cause blindness in premature neonates. It is diagnosed when new blood vessels form abnormally in the retina. However, people at high risk of ROP might benefit significantly from early detection and treatment. Therefore, early diagnosis of ROP is vital in averting visual impairment. However, due to a lack of medical experience in detecting this condition, many people refuse treatment; this is especially troublesome given the rising cases of ROP. To deal with this problem, we trained three transfer learning models (VGG-19, ResNet-50, and EfficientNetB5) and a convolutional neural network (CNN) to identify the zones of ROP in preterm newborns. The dataset to train th</p> ... Show More
View Publication
Scopus (10)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Agrosystems, Geosciences &amp; Environment
Cover crop influence on soil water dynamics for a corn–soybean rotation
...Show More Authors
Abstract<p>Crop production is reduced by insufficient and/or excess soil water, which can significantly decrease plant growth and development. Therefore, conservation management practices such as cover crops (CCs) are used to optimize soil water dynamics, since CCs can conserve soil water. The objective of this study was to determine the effects of CCs on soil water dynamics on a corn (<italic>Zea mays</italic> L.)–soybean [<italic>Glycine max</italic> (L.) Merr.] rotation at three soil depths over 3 yr. The study was conducted at the Chariton County Cover Crop Soil Health Research and Demonstration Farm (CCSH) in Missouri. Initial CC establishment occurred in 2012. Volumetric soil water </p> ... Show More
View Publication
Scopus (18)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Tue Jun 01 2021
Journal Name
International Journal Of Nonlinear Analysis And Applications
Bayes estimators of a multivariate generalized hyperbolic partial regression model
...Show More Authors

View Publication
Scopus (1)
Scopus
Publication Date
Mon Apr 11 2011
Journal Name
Icgst
Employing Neural Network and Naive Bayesian Classifier in Mining Data for Car Evaluation
...Show More Authors

In data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.

Publication Date
Thu May 31 2012
Journal Name
Al-khwarizmi Engineering Journal
Restrained Edges Effect on the Dynamics of Thermoelastic Plates under Different End Conditions
...Show More Authors

Frequency equations for rectangular plate model with and without the thermoelastic effect for the cases are: all edges are simply supported, all edges are clamped and two opposite edges are clamped others are simply supported.   These were obtained through direct method for simply supported ends using Hamilton’s principle with minimizing Ritz method to total energy (strain and kinetic) for the rest of the boundary conditions. The effect of restraining edges on the frequency and mode shape has been considered. Distributions temperatures have been considered as a uniform temperature the effect of developed thermal stresses due to restrictions of ends conditions on vibration characteristics   of a plate with different

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Communications In Mathematical Biology And Neuroscience
Effects of fear and refuge strategy dependent on predator in food web dynamics
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Advances In Science, Technology And Engineering Systems Journal
Bayes Classification and Entropy Discretization of Large Datasets using Multi-Resolution Data Aggregation
...Show More Authors

Big data analysis has important applications in many areas such as sensor networks and connected healthcare. High volume and velocity of big data bring many challenges to data analysis. One possible solution is to summarize the data and provides a manageable data structure to hold a scalable summarization of data for efficient and effective analysis. This research extends our previous work on developing an effective technique to create, organize, access, and maintain summarization of big data and develops algorithms for Bayes classification and entropy discretization of large data sets using the multi-resolution data summarization structure. Bayes classification and data discretization play essential roles in many learning algorithms such a

... Show More
View Publication
Scopus Crossref
Publication Date
Wed Oct 17 2018
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison of Bayes Estimators for the parameter of Rayleigh Distribution with Simulation
...Show More Authors

   A comparison of double informative and non- informative priors assumed for the parameter of Rayleigh distribution is considered. Three different sets of double priors are included, for a single unknown parameter of Rayleigh distribution. We have assumed three double priors: the square root inverted gamma (SRIG) - the natural conjugate family of priors distribution, the square root inverted gamma – the non-informative distribution, and the natural conjugate family of priors - the non-informative distribution as double priors .The data is generating form three cases from Rayleigh distribution for different samples sizes (small, medium, and large). And Bayes estimators for the parameter is derived under a squared erro

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Mar 30 2025
Journal Name
Mustansiriyah Journal Of Pure And Applied Sciences
Secure E-voting authentication system employing biometric technology, Crypto-Watermarking Approach and blockchain technology: A Review
...Show More Authors

Moderately, advanced national election technologies have improved political systems. As electronic voting (e-voting) systems advance, security threats like impersonation, ballot tampering, and result manipulation increase. These challenges are addressed through a review covering biometric authentication, watermarking, and blockchain technologies, each of which plays a crucial role in improving the security of e-voting systems. More precisely, the biometric authentication is being examined due to its ability in identify the voters and reducing the risks of impersonation. The study also explores the blockchain technology to decentralize the elections, enhance the transparency and ensure the prevention of any unauthorized alteration or

... Show More
View Publication
Crossref