Electrical properties were studied for Pectin/PVA graphene composites films and the effect of aqueous interaction on their properties. The conductivity and the dielectric constant of this composite are important because Polysaccharide like pectin is increasingly being used in biomedical applications and as nanoparticles coating materials. The Dielectric and conductivity of composite films were compared in dry and wet condition the differences in the results were attributed to the water molecules and the hydrogen bond which connect the three composite compounds (Pectin, PVA and Graphene) together. These connections were allowed the hydrogen and hydroxyl group’s migrations in the composite super molecules. On the other hand, graphene was prepared and with different techniques like Ft-IR, XRD, SEM and AFM characterized
The preparation and characterization of innovative nanocomposites based on zinc oxide nanorods (ZNR) encapsulated by graphene (Gr) nanosheets and decorated with silver (Ag), and cupper (Cu) nanoparticles (NP) were studied. The prepared nanocomposites (ZNR@Gr/Cu-Ag) were examined by different techniques including Field Emission Scanning Electron Microscope (FESEM), Transmission electron microscopy (TEM), Atomic force microscopy (AFM), UV-Vis spectrophotometer and fluorescence spectroscopy. The results showed that the ZNR has been good cover by five layers of graphene and decorated with Ag and Cu NPs with particles size of about 10-15 nm. The ZNR@Gr/Cu-Ag nanocomposites exhibit high absorption behavior in ultraviolet (UV) region of sp
... Show MoreIn this study, polymeric coating was developed by incorporating nano graphene in the polymer blend with applications to oil storage tanks. The oil storage tanks samples were brought from the oil Pipeline Company / Doura refinery in Baghdad. The coating polymer was formed with a blend (epoxy resin and repcoat ZR). The proportion of mixing the mixture was 3:1:1 epoxy resin 21.06 gm: repcoat ZR 10.53 gm: hardener 10.53 gm. The blend/graphene was prepared using in stui-polymerization method with different weight percentage 1, 3, 5, and 7 wt % added to blend. The resulting solution was put in a glass tube on a magnetic stirrer for one hour at a temperature of 40 °C. The result of contact angle and wate
... Show MoreThin films of zinc selenide ZnSe have been prepared by using thermal evaporation method in vacuum with different thickness (1000 – 4000) Ao and a deposited on glass substrate and studying some electrical properties including the determination of A.C conductivity and real, imaginary parts of dielectric constant and tangent of loss angle. The result shows that increasing value of A.C conductivity with increasing thickness and temperature, and increasing capacitance value with increasing the temperature and decrease with increasing frequency . Real and imaginary parts of dielectric constant and tangent of loss angle decrease with increasing frequency
This work aimed PVA nanofibers in a range of concentrations were successfully manufactured via electrospinning. PVA NFs/Si was effectively prepared using the electrospinning process. The structural, morphological, optical and electrical properties of the prepared PVA were studied using XRD, FE-SEM, UV-Vis spectrophotometer and I-V characteristics, respectively. The amorphous structure of PVA nanofibers was observed. The optical energy gap from ultraviolet to visible was between (2.75 and 2.41) eV, making this compound highly sensitive to visible orange light at 610 nm, with a photosensitivity of 66%. The optical energy gap of PVA/Si heterojunction was utilized to modify this film from the UV to the visible spectrum. As show in the results,
... Show MoreIn this research the electrical conductivity and optical measurements were made on the Iron Oxide (Fe2O3) films prepared by chemical spray pyrolysis method as a function of thickness (250, 350, 450, and 550)  20 nm. The measurements of electrical conductivity (σ), activation energies (Ea1, Ea2),and optical constant such as absorption coefficient, refractive index, extinction coefficient and the dielectric constants for the wavelengths in the range (300-900) nm have been investigated on (Fe2O3) thin films as a function of thickness. All films contain two types of transport mechanisms, and the electrical conductivity (σ) increases whereas the activation energy (Ea) would decrease as the films thi
... Show MoreIn this research, the effect of multi-walled carbon nanotubes (MWCNTs) on the alumina/chromia (Al2O3/Cr2O3) nanocomposites has been investigated. Al2O3/Cr2O3-MWCNTs nanocomposites with variable contents of Cr2O3 and MWCNTs were fabricated using coprecipitation process and followed by spark plasma sintering. XRD analysis revealed a good crystallinity of sintered nanocomposites samples and there was only one phase presence of Al2O3-Cr2O3 solid solution. Density, Vickers microhardness, fracture toughness and fracture strength have been measured in the sintered samples. The results show tha
... Show MoreThe radial wave function R(r) and the radial distribution function P(r) as a function of (r), for the Hydrogen atom was calculated for several atomic state (1s,2s,2p,3s,3p,3d) The results were compared with Hydrogen like atom(He+,Li+2,Be+3).
structural and electrical of CuIn (Sex Te1-x)2
A nanocrystalline thin films of PbS with different thickness (400, 600)nm have been prepared successfully by chemical bath deposition technique on glass and Si substrates. The structure and morphology of these films were studied by X-ray diffraction and atomic force microscope. It shows that the structure is polycrystalline and the average crystallite size has been measured. The electrical properties of these films have been studied, it was observed that D.C conductivity at room temperature increases with the increase of thickness, From Hall measurements the conductivity for all samples of PbS films is p-type. Carrier's concentration, mobility and drift velocity increases with increasing of thickness. Also p-PbS/n-Si heterojunction has been
... Show MorePolyimide/polyaniline nanofiber composites were prepared by in situ polymerization with various weight percentages of polyaniline (PANI) nanofibers. X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR), proved the successful preparation of PANI nanofiber composite films. In addition, thermal stability of PI/PANI nanofiber composites was superior relative to PI, having 10 % gravimetric loss in the range of 623 °C to 671 °C and glass transition temperature of 289 °C to 297 °C. Furthermore, the values of the loss tangent tanδ and AC conductivity σAC of the nanocomposite films were notably higher than those of pure polyimide. The addition of 5 wt.% to 15 wt.% PANI