Electrical properties were studied for Pectin/PVA graphene composites films and the effect of aqueous interaction on their properties. The conductivity and the dielectric constant of this composite are important because Polysaccharide like pectin is increasingly being used in biomedical applications and as nanoparticles coating materials. The Dielectric and conductivity of composite films were compared in dry and wet condition the differences in the results were attributed to the water molecules and the hydrogen bond which connect the three composite compounds (Pectin, PVA and Graphene) together. These connections were allowed the hydrogen and hydroxyl group’s migrations in the composite super molecules. On the other hand, graphene was prepared and with different techniques like Ft-IR, XRD, SEM and AFM characterized
Elastic magnetic M1 electron scattering form factor has been calculated for the ground state J,T=1/2-,1/2 of 13C. The single-particle model is used with harmonic oscillator wave function. The core-polarization effects are calculated in the first-order perturbation theory including excitations up to 5ħω, using the modified surface delta interaction (MSDI) as a residual interaction. No parameters are introduced in this work. The data are reasonably explained up to q~2.5fm-1 .
In the present work the Buildup factor for gamma rays were studied in shields from epoxy reinforced by lead powder and by aluminum powder, for NaI(Tl) scintillation detector size ( ×? ), using two radioactive sources (Co-60 and Cs-137). The shields which are used (epoxy reinforced by lead powder with concentration (10-60)% and epoxy reinforced by aluminum powder with concentration (10-50)% by thick (6mm) and epoxy reinforced by lead powder with concentration (50%) with thick (2,4,6,8,10)mm. The experimental results show that: The linear absorption factor and Buildup factor increase with increase the concentration for the powders which used in reinforcement and high for aluminum powder than the lead powder and decrease with inc
... Show MoreIn this study, pure SnO2 Nanoparticles doped with Cu were synthesized by a chemical precipitation method. Using SnCl2.2H2O, CuCl2.2H2O as raw materials, the materials were annealed at 550°C for 3 hours in order to improve crystallization. The XRD results showed that the samples crystallized in the tetragonal rutile type SnO2 stage. As the average SnO2 crystal size is pure 9nm and varies with the change of Cu doping (0.5%, 1%, 1.5%, 2%, 2.5%, 3%),( 8.35, 8.36, 8.67, 9 ,7, 8.86)nm respectively an increase in crystal size to 2.5% decreases at this rate and that the crystal of SnO2 does not change with the introduction of Cu, and S
... Show MoreThe physical and elastic characteristics of rocks determine rock strengths in general. Rock strength is frequently assessed using porosity well logs such as neutron and sonic logs. The essential criteria for estimating rock mechanic parameters in petroleum engineering research are uniaxial compressive strength and elastic modulus. Indirect estimation using well-log data is necessary to measure these variables. This study attempts to create a single regression model that can accurately forecast rock mechanic characteristics for the Harth Carbonate Formation in the Fauqi oil field. According to the findings of this study, petrophysical parameters are reliable indexes for determining rock mechanical properties having good performance p
... Show MoreResults of a study of alloys and films with various Pb content have been reported and discussed. Films of of thickness 1.5
In this work, ZnO nanostructures for powder ZnO were synthesized by Hydrothermal Method. Size and shape of ZnO nanostructureas can be controlled by change ammonia concentration. In the preparation of ZnO nanostructure, zinc nitrate hexahydrate [Zn(NO3)2·6H2O] was used as a precursor. The structure and morphology of ZnO nanostructure have been characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD). The synthesized ZnO nanostructures have a hexagonal wurtzite structure. Also using Zeta potential and Particle Size Analyzers and size distribution of the ZnO powder