With the continuous downscaling of semiconductor processes, the growing power density and thermal issues in multicore processors become more and more challenging, thus reliable dynamic thermal management (DTM) is required to prevent severe challenges in system performance. The accuracy of the thermal profile, delivered to the DTM manager, plays a critical role in the efficiency and reliability of DTM, different sources of noise and variations in deep submicron (DSM) technologies severely affecting the thermal data that can lead to significant degradation of DTM performance. In this article, we propose a novel fault-tolerance scheme exploiting approximate computing to mitigate the DSM effects on DTM efficiency. Approximate computing in hardware design can lead to significant gains in energy efficiency, area, and performance. To exploit this opportunity, there is a need for design abstractions that can systematically incorporate approximation in hardware design which is the main contribution of our work. Our proposed scheme achieves 11.20% lower power consumption, 6.59% smaller area, and 12% reduction in the number of wires, while increasing DTM efficiency by 5.24%.
Calculation of the power density of the nuclear fusion reactions plays an important role in the construction of any power plants. It is clear that the power released by fusion reaction strongly depended on the fusion cross section and fusion reactivity. Our calculation concentrates on the most useful and famous fuels (Deuterium-tritium) since it represents the principle fuels in any large scale system like the so called tokomak.
In this study, multi-objective optimization of nanofluid aluminum oxide in a mixture of water and ethylene glycol (40:60) is studied. In order to reduce viscosity and increase thermal conductivity of nanofluids, NSGA-II algorithm is used to alter the temperature and volume fraction of nanoparticles. Neural network modeling of experimental data is used to obtain the values of viscosity and thermal conductivity on temperature and volume fraction of nanoparticles. In order to evaluate the optimization objective functions, neural network optimization is connected to NSGA-II algorithm and at any time assessment of the fitness function, the neural network model is called. Finally, Pareto Front and the corresponding optimum points are provided and
... Show MoreSeventy five isolates of Saccharomyces cerevisiae were identified, they were isolated from different local sources which included decayed fruits and vegetables, vinegar, fermented pasta, baker yeast and an alcohol factory. Identification of isolates was carried out by cultural microscopical and biochemical tests. Ethanol sensitivity of the isolates showed that the minimal inhibitory concentration of the isolate (Sy18) was 16% and Lethal concentration was 17%. The isolate (Sy18) was most efficient as ethanol producer 9.36% (v/w). The ideal conditions to produce ethanol from Date syrup by yeast isolate, were evaluated, various temperatures, pH, Brix, incubation period and different levels of (NH4)2HP04. Maximum ethanol produced was 10
... Show MoreThe expanding use of multi-processor supercomputers has made a significant impact on the speed and size of many problems. The adaptation of standard Message Passing Interface protocol (MPI) has enabled programmers to write portable and efficient codes across a wide variety of parallel architectures. Sorting is one of the most common operations performed by a computer. Because sorted data are easier to manipulate than randomly ordered data, many algorithms require sorted data. Sorting is of additional importance to parallel computing because of its close relation to the task of routing data among processes, which is an essential part of many parallel algorithms. In this paper, sequential sorting algorithms, the parallel implementation of man
... Show MoreLead-acid batteries have been used increasingly in recent years in solar power systems, especially in homes and small businesses, due to their cheapness and advanced development in manufacturing them. However, these batteries have low voltages and low capacities, to increase voltage and capacities, they need to be connected in series and parallel. Whether they are connected in series or parallel, their voltages and capacities must be equal otherwise the quality of service will be degraded. The fact that these different voltages are inherent in their manufacturing, but these unbalanced voltages can be controlled. Using a switched capacitor is a method that was used in many methods for balancing voltages, but their respons
... Show MoreIn this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. In order to investigate the response of soil and footing to steady state dynamic loading, a physical model was manufactured to simulate steady state harmonic load at different operating frequencies. Total of 84 physical models were performed. The footing parameters are related to the size of the rectangular footing and depth of embedment. Two sizes of rectangular steel model footing were tested at the surface and at 50 mm depth below model surface. Meanwhile the investigated parameters of the soil condition include dry and saturated sand for two relative densities 30% and 80%. The response of the footing was ela
... Show MoreThe purpose of this study is to investigate the biostimulation effect of 532 nm CW laser on the metabolism of Saccharomyces cerevisiae yeast. Cells were irradiated by 532 nm Nd:YAG laser using 0.153 W/cm2 power density at 30, 45, 60,180 and 300 seconds exposure times in their respective orders. Intrafluorescence parameters were measured by detection the autofluorescence intensity, proliferation rate and Imaging the fluorescent mitochondria using confocal laser scanning microscope. The results showed that the 30 and 45 second exposure times seem to have stimulated changes in the cells that led to increase proliferation, viability and mitochondrial activity. Autofluorescence of cells increased after 45 and 60 seconds exposure time. After 3
... Show MoreA piezoelectric cantilever beam with a tip mass at its free end is a common energy harvester configuration. This article introduces a new principle of designing such a harvester that increases the generated power without changing the resonance frequency of the harvester: the attraction force between two permanent magnets is used to add stiffness to the system. This magnetic stiffening counters the effect of the tip mass on the efficient operation frequency. Five set-ups incorporating piezoelectric bimorph cantilevers of the same type in different mechanical configurations are compared theoretically and experimentally to investigate the feasibility of this principle: theoretical and experimental results show that magnetically stiffened harve
... Show More