This work proposes a new video buffer framework (VBF) to acquire a favorable quality of experience (QoE) for video streaming in cellular networks. The proposed framework consists of three main parts: client selection algorithm, categorization method, and distribution mechanism. The client selection algorithm was named independent client selection algorithm (ICSA), which is proposed to select the best clients who have less interfering effects on video quality and recognize the clients’ urgency based on buffer occupancy level. In the categorization method, each frame in the video buffer is given a specific number for better estimation of the playout outage probability, so it can efficiently handle so many frames from different videos at different bitrates. Meanwhile, at the proposed distribution mechanism, a predetermined threshold value is selected for lower and upper levels of playout outage probability. Then, the control unit at the base station will distribute the radio resources and decide the minimum rate requirement based on clients’ urgency categories. Simulation results showed that the VBF grantees fairness of resources distribution among different clients within the same cellular network while minimizing the interruption duration and controlling the video buffer at an acceptable level. Also, the results showed that the system throughput of the proposed framework outperforms other existing algorithms such as playout buffer and discontinuous reception aware scheduling (PBDAS), maximum carrier-to-interface ratio (MAX-CIR), and proportional fair (PF) due to enhancing the quality of experience for video streaming by increasing the radio resources in fairness manner.
Wireless sensor networks (WSNs) are emerging in various application like military, area monitoring, health monitoring, industry monitoring and many more. The challenges of the successful WSN application are the energy consumption problem. since the small, portable batteries integrated into the sensor chips cannot be re-charged easily from an economical point of view. This work focusses on prolonging the network lifetime of WSNs by reducing and balancing energy consumption during routing process from hop number point of view. In this paper, performance simulation was done between two types of protocols LEACH that uses single hop path and MODLEACH that uses multi hop path by using Intel Care i3 CPU (2.13GHz) laptop with MATLAB (R2014a). Th
... Show MoreIn this research the results of applying Artificial Neural Networks with modified activation function to perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of identification strategy consists of a feed-forward neural network with a modified activation function that operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have been trained online and offline have been used, without requiring any previous knowledge about the system to be identified. The activation function that is used in the hidden layer in FFNN is a modified version of the wavelet function. This approach ha
... Show MoreAbstract:
Aim: The goal of this research was to study the influence of Er,Cr:YSGG laser at short pulse duration (60 µsec) on the number of streptococcus mutans bacteria in vitro.
Material and Methods: twenty-eight extracted third molars free of caries, cracks, and other irregularities were used. For the testing of the materials, both the agar well technique and a tooth cavity model were employed. The agar wells of plates that had been inoculated with Streptococcus mutans previously were stuffed with the test materials, in order to conduct the tests. The zones of inhibition were assessed using millimeter measurements, after an incubation period of 48 hours .In order to a
... Show MoreThis study aims to investigate the adequacy of composite cellular beams with lightweight reinforced concrete deck slab as a structural unit for harmonic loaded buildings. The experimental program involved three fixed-ends supported beams throughout 2140 mm. Three concrete types were included: Normal Weight Concrete (NWC), Lightweight Aggregate Concrete (LWAC), and Lightweight Fiber Reinforced Aggregate Concrete (LWACF). The considered frequencies were (5, 10, 15, 20, 25, and 30) Hz. It was indicated that the harmonic load caused a significant influence on LWAC response (64% greater than NWC) and lattice cracks were observed, especially at 30 Hz. As for LWACF slab, no cracks appeared,
High vehicular mobility causes frequent changes in the density of vehicles, discontinuity in inter-vehicle communication, and constraints for routing protocols in vehicular ad hoc networks (VANETs). The routing must avoid forwarding packets through segments with low network density and high scale of network disconnections that may result in packet loss, delays, and increased communication overhead in route recovery. Therefore, both traffic and segment status must be considered. This paper presents real-time intersection-based segment aware routing (RTISAR), an intersection-based segment aware algorithm for geographic routing in VANETs. This routing algorithm provides an optimal route for forwarding the data packets toward their destination
... Show More<p>Energy and memory limitations are considerable constraints of sensor nodes in wireless sensor networks (WSNs). The limited energy supplied to network nodes causes WSNs to face crucial functional limitations. Therefore, the problem of limited energy resource on sensor nodes can only be addressed by using them efficiently. In this research work, an energy-balancing routing scheme for in-network data aggregation is presented. This scheme is referred to as Energy-aware and load-Balancing Routing scheme for Data Aggregation (hereinafter referred to as EBR-DA). The EBRDA aims to provide an energy efficient multiple-hop routing to the destination on the basis of the quality of the links between the source and destination. In
... Show MoreThe aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).