Spergularia iraqensis sp. nov. is described as a new species from Iraq. This species has been collected from Diyala Province in the central east of Iraq; it is closely related to Spergularia rubra (L.) J. Presl & C. Presl, 1819 and Spergularia bocconei (Scheele) Graebn., 1919.
The distinguishing of the morphological characteristics of the new species alongside the two similar species are discussed with photographs, and an identification key is given for Spergularia iraqensis and other closely related species.
Viscosity is one of the most important governing parameters of the fluid flow, either in the porous media or in pipelines. So it is important to use an accurate method to calculate the oil viscosity at various operating conditions. In the literature, several empirical correlations have been proposed for predicting crude oil viscosity. However, these correlations are limited to predict the oil viscosity at specified conditions. In the present work, an extensive experimental data of oil viscosities collected from different samples of Iraqi oil reservoirs was applied to develop a new correlation to calculate the oil viscosity at various operating conditions either for dead, satura
... Show MoreIn this study, multi-objective optimization of nanofluid aluminum oxide in a mixture of water and ethylene glycol (40:60) is studied. In order to reduce viscosity and increase thermal conductivity of nanofluids, NSGA-II algorithm is used to alter the temperature and volume fraction of nanoparticles. Neural network modeling of experimental data is used to obtain the values of viscosity and thermal conductivity on temperature and volume fraction of nanoparticles. In order to evaluate the optimization objective functions, neural network optimization is connected to NSGA-II algorithm and at any time assessment of the fitness function, the neural network model is called. Finally, Pareto Front and the corresponding optimum points are provided and
... Show Moresix specimens of the Hg0.5Pb0.5Ba2Ca2Cu3-y
A novel technique Sumudu transform Adomian decomposition method (STADM), is employed to handle some kinds of nonlinear time-fractional equations. We demonstrate that this method finds the solution without discretization or restrictive assumptions. This method is efficient, simple to implement, and produces good results. The fractional derivative is described in the Caputo sense. The solutions are obtained using STADM, and the results show that the suggested technique is valid and applicable and provides a more refined convergent series solution. The MATLAB software carried out all the computations and graphics. Moreover, a graphical representation was made for the solution of some examples. For integer and fractional order problems, solutio
... Show MoreIn the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show MoreThe formation of a Schiff-base with N2O2 donor atoms derived from the hydrazine segment and its metal complexes are reported. The Schiff-base ligand; N’-((1R,2S,4R,5S,Z)-2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9-ylidene)furan-2-carbohydrazide (HL) was prepared from the reaction of furan-2-carbohydrazide with (1R, 2R, 4R, 5S)-2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9-one (M1) in ethanol medium. The reaction of the title ligand with selected metal ions Cr(III), Mn(II), Ni(II), Cu(II), Zn(II) and Cd(II) gave complexes with the general formula [M(L)Cl2], (where: M = Cr(III), Mn(II), Ni(II), Cu(II), Zn(II) and Cd(II)). Spectroscopic analyses Fourier transform infrared (FT-IR), Nuclear Magnetic Resonance (NMR) Carbon-13 nuclear magnetic res
... Show More