Olanzapine (OLZ) is classified as a typical antipsychotic drug utilized for the treatment of schizophrenia. Its oral bioavailability is 60% due to its low solubility and pre-systemic metabolism. Hence, the present work aims to formulate and evaluate OLZ nanoparticles dissolving microneedles (MNs) for transdermal delivery to overcome the problems associated with drug administration orally. OLZ nanoparticles were prepared by the nanoprecipitation method. The optimized OLZ nanoparticle formula was utilized for the fabrication of dissolving MNs by loading OLZ nanodispersion into polydimethylsiloxane (PDMS) micromould cavities, followed by casting the polymeric solution of polyvinylpyrrolidone(PVP-K30) and polyvinyl alcohol (PVA) to form MN matrix. The results revealed that the optimized OLZ nanoparticle formula (NP-5) exhibited particle size 115.76±5.45 nm, entrapment efficiency 78.4±5.46, and zeta potential -19.01±1.6 mV. The results of MNs revealed that MN-4 exhibits a high drug content of 98.52%, and ex vivo permeation through rabbit skin exhibited that MN-4 permeates more effectively than a simple patch by approximately 5.16 fold. In vivo pharmacokinetics study revealed that the area under curve AUC 0-∞ of MN-4 was 6054.56±376 ng. h/ml as compared with AUC0-∞ of marketed OLZ tablet was 3975.77±373 ng. h/ml. It can be concluded that the dissolving MN-4 patch is considered a promising formula to overcome the problems associated with drug administration orally and could improve drug bioavailability, in addition to the ease of administering the medication to schizophrenic patients.
In the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show MoreBackground: Diabetes is a chronic illness that requires continuing medical care to prevent acute complications and to reduce the risk of long-term complication. Eye
diseases are the most feared complication of diabetes. The main disorders include diabetic retinopathy, cataracts and glaucoma. Early detection of these conditions is
important to avoid risk of vision affection or even blindness.
Objectives: This study aimed to assess the prevalence and risk factors for eye problems among 20-65 years old diabetics' patients.
Methods: We studied 2540 diabetic patients selected from the Specialized Center for Endocrinology & Diabetes and the National Center for Treatment & Research of
Diabetes in Al-Mu
Mass transfer correlations for iron rotating cylinder electrode in chloride/sulphate solution, under isothermal and
controlled heat transfer conditions, were derived. Limiting current density values for the oxygen reduction reaction from
potentiostatic experiments at different bulk temperatures and various turbulent flow rates, under isothermal and heat
transfer conditions, were used for such derivation. The corelations were analogous to that obtained by Eisenberg et all
and other workers.
Among the undesirable effects of soil compaction is a measurable reduction in plant growth and crop yield. The prevailing belief is that compacted tillage pans are caused by repetitive farming practices, heavy tractors, tillage tools, and field traffic. This experiment was conducted to determine and map the hardpan layers across an agricultural field through advanced technologies of precision agriculture. These valuable techniques such as data logger, yield map, and data analysis of performance indicators were linked with accurate global positioning systems (GPS) datasets. These important technologies provided the farmers and helped them to identify and manage areas of the fields with higher compacted layers. Three ground speeds 4.3
... Show MoreThe expanding of the medically important diseases created by multidrug-resistant Acinetobacter baumannii warrants the evolve a new methodology for prevention includes vaccination and treatment. Totally of forty-five clinical isolates identified as A.baumannii were obtained from hospitalized patients from three hospital in Baghdad City during the period from February 2016 to August 2016. Followed by diagnosing using different methods. Every strain was tested for susceptibility testing also some important virulence factorswere detected. Two isolates were chosen for the immunization and vaccine model, the first one remittent for most antibiotics except one are too virulence (strong) and the second is less virulent and resistance (weak).Enzyme-
... Show MoreIn this study, a mathematical model is presented to study the chemisorption of two interacting atoms on solid surface in the presence of laser field. Our mathematical model is based on the occupation numbers formula that depends on the laser field which we derived according to Anderson model for single atom adsorbed on solid surface. Occupation numbers formula and chemisorption energy formula are derived for two interacting atoms (as a diatomic molecule) as they approach to the surface taking into account the correlation effects on each atom and between atoms. This model is characterized by obvious dependence of all relations on the system variables and the laser field characteristics which gives precise description for the molecule –
... Show MoreA novel technique Sumudu transform Adomian decomposition method (STADM), is employed to handle some kinds of nonlinear time-fractional equations. We demonstrate that this method finds the solution without discretization or restrictive assumptions. This method is efficient, simple to implement, and produces good results. The fractional derivative is described in the Caputo sense. The solutions are obtained using STADM, and the results show that the suggested technique is valid and applicable and provides a more refined convergent series solution. The MATLAB software carried out all the computations and graphics. Moreover, a graphical representation was made for the solution of some examples. For integer and fractional order problems, solutio
... Show MoreAbstract
This study highlights the importance of Iraq in the analysis of foreign trade and economic growth for the period (1980 - 2013) is an attempt to determine the equilibrium relationship long term and short term between these two variables were used ARDL model to explain the economic relationship between the two variables.
To achieve the objectives of the research has been the standard model estimate after testing the stability of exports X data series, and imports M, and GDP current prices, and exchange rate EXR, and verify the existence of a joint integration relationship between these variables.
In order to achieve the objectives of the research it
... Show MoreIn this paper, we present a Branch and Bound (B&B) algorithm of scheduling (n) jobs on a single machine to minimize the sum total completion time, total tardiness, total earliness, number of tardy jobs and total late work with unequal release dates. We proposed six heuristic methods for account upper bound. Also to obtain lower bound (LB) to this problem we modified a (LB) select from literature, with (Moore algorithm and Lawler's algorithm). And some dominance rules were suggested. Also, two special cases were derived. Computational experience showed the proposed (B&B) algorithm was effective in solving problems with up to (16) jobs, also the upper bounds and the lower bound were effective in restr
... Show MoreMixed-effects conditional logistic regression is evidently more effective in the study of qualitative differences in longitudinal pollution data as well as their implications on heterogeneous subgroups. This study seeks that conditional logistic regression is a robust evaluation method for environmental studies, thru the analysis of environment pollution as a function of oil production and environmental factors. Consequently, it has been established theoretically that the primary objective of model selection in this research is to identify the candidate model that is optimal for the conditional design. The candidate model should achieve generalizability, goodness-of-fit, parsimony and establish equilibrium between bias and variab
... Show More