Distributed Denial of Service (DDoS) attacks on Web-based services have grown in both number and sophistication with the rise of advanced wireless technology and modern computing paradigms. Detecting these attacks in the sea of communication packets is very important. There were a lot of DDoS attacks that were directed at the network and transport layers at first. During the past few years, attackers have changed their strategies to try to get into the application layer. The application layer attacks could be more harmful and stealthier because the attack traffic and the normal traffic flows cannot be told apart. Distributed attacks are hard to fight because they can affect real computing resources as well as network bandwidth. DDoS attacks can also be made with smart devices that connect to the Internet, which can be infected and used as botnets. They use Deep Learning (D.L.) techniques like Convolutional Neural Network (C.N.N.) and variants of Recurrent Neural Networks (R.N.N.), such as Long Short-Term Memory (L.S.T.M.), Bidirectional L.S.T.M., Stacked L.S.T.M., and the Gat G.R.U.. These techniques have been used to detect (DDoS) attacks. The Portmap.csv file from the most recent DDoS dataset, CICDDoS2019, has been used to test D.L. approaches. Before giving the data to the D.L. approaches, the data is cleaned up. The pre-processed dataset is used to train and test the D.L. approaches. In the paper, we show how the D.L. approach works with multiple models and how they compare to each other.
The demand for single photon sources in quantum key distribution (QKD) systems has necessitated the use of weak coherent pulses (WCPs) characterized by a Poissonian distribution. Ensuring security against eavesdropping attacks requires keeping the mean photon number (µ) small and known to legitimate partners. However, accurately determining µ poses challenges due to discrepancies between theoretical calculations and practical implementation. This paper introduces two experiments. The first experiment involves theoretical calculations of µ using several filters to generate the WCPs. The second experiment utilizes a variable attenuator to generate the WCPs, and the value of µ was estimated from the photons detected by the BB
... Show MoreAccurate prediction of river water quality parameters is essential for environmental protection and sustainable agricultural resource management. This study presents a novel framework for estimating potential salinity in river water in arid and semi‐arid regions by integrating a kernel extreme learning machine (KELM) with a boosted salp swarm algorithm based on differential evolution (KELM‐BSSADE). A dataset of 336 samples, including bicarbonate, calcium, pH, total dissolved solids and sodium adsorption ratio, was collected from the Idenak station in Iran and was used for the modelling. Results demonstrated that KELM‐BSSADE outperformed models such as deep random vector funct
This research aims at building a proposed training program according to the self-regulated strategies for the mathematics teachers and to identify the effect of this program on relational Mathematics of teachers. The sample of the research was (60) Math teachers; (30) teachers as experimental group and (30) teachers as control group. The results of the current research reacheded that the proposed training program according to some self-managed learning strategies, meets the needs of trainees with remarkable effectiveness to improve the level of their teaching performance to achieve the desired goals. Training teacher according to self-managed learning strategies is effective in bringing about the transition of training to their students
... Show MoreAI in teaching English is reshaping language learning. While interest in AI-supported education is growing worldwide, research in this area is still emerging in Iraq. This review synthesizes empirical AI-based intervention studies to enhance English language learning in Iraqi higher education, and the perceptions of stakeholders regarding AI tools in language instruction. The reviewed intervention studies, comprising studies employed different AI platforms to support grammar instruction, speaking fluency, writing feedback, and pragmatic competence. These interventions yielded improvements in learners’ performance, motivation, and communicative confidence. In parallel, perception-focused studies revealed positive attitudes toward A
... Show MoreThe problem of this research lies in the fact that there is a lack of accurate scientific perceptions about the size of the use of Iraqi women’s social networking sites and the motives behind this use and the expectations generated by them.
The goals of the research are as follows:
1- Determine the extent of Iraqi women’s use of social networking sites (Facebook, YouTube, twitter, and Instagram).
2- Investigative the motives behind the use of social networking sites by Iraqi women.
3- Detecting the repercussions of Iraqi women’s use of social networking sites (Facebook, you tube, twitter, and Instagram).
The research is classified as a descriptive one. The researchers use the survey methodology. The research commu
The Objective of the research is to identify the Strategic Vigilance and effect in the Managerial Decision Quality, by knowing the interest of the organization influence the Strategic Vigilance in the Managerial Decision Quality, adopted four dimensions of the Strategic Vigilance is (Environmental Vigilance, Commercial, Competitiveness & Technology) to indicate the extent individually and collectively impact in the Managerial Decision Quality, The questionnaire was used as a main tool to survey the views of a sample of 45 managers, was named Supreme Judicial Council society for research, and the statistical program SPSS, and research found a clear positive impact dimensions Strategic Vigilance in the Manageri
... Show More