Background/Objectives: The purpose of current research aims to a modified image representation framework for Content-Based Image Retrieval (CBIR) through gray scale input image, Zernike Moments (ZMs) properties, Local Binary Pattern (LBP), Y Color Space, Slantlet Transform (SLT), and Discrete Wavelet Transform (DWT). Methods/Statistical analysis: This study surveyed and analysed three standard datasets WANG V1.0, WANG V2.0, and Caltech 101. The features an image of objects in this sets that belong to 101 classes-with approximately 40-800 images for every category. The suggested infrastructure within the study seeks to present a description and operationalization of the CBIR system through automated attribute extraction system premised on CNN infrastructure. Findings: The results acquired through the investigated CBIR system alongside the benchmarked results have clearly indicated that the suggested technique had the best performance with the overall accuracy at 88.29% as opposed to the other sets of data adopted in the experiments. The outstanding results indicate clearly that the suggested method was effective for all the sets of data. Improvements/Applications: As a result of this study, it was found the revealed that the multiple image representation was redundant for extraction accuracy, and the findings from the study indicated that automatically retrieved features are capable and reliable in generating accurate outcomes.
Localization is an essential demand in wireless sensor networks (WSNs). It relies on several types of measurements. This paper focuses on positioning in 3-D space using time-of-arrival- (TOA-) based distance measurements between the target node and a number of anchor nodes. Central localization is assumed and either RF, acoustic or UWB signals are used for distance measurements. This problem is treated by using iterative gradient descent (GD), and an iterative GD-based algorithm for localization of moving sensors in a WSN has been proposed. To localize a node in 3-D space, at least four anchors are needed. In this work, however, five anchors are used to get better accuracy. In GD localization of a moving sensor, the algo
... Show MoreInternet paths sharing the same congested link can be identified using several shared congestion detection techniques. The new detection technique which is proposed in this paper depends on the previous novel technique (delay correlation with wavelet denoising (DCW) with new denoising method called Discrete Multiwavelet Transform (DMWT) as signal denoising to separate between queuing delay caused by network congestion and delay caused by various other delay variations. The new detection technique provides faster convergence (3 to 5 seconds less than previous novel technique) while using fewer probe packets approximately half numbers than the previous novel technique, so it will reduce the overload on the network caused by probe packets.
... Show MoreThe present paper aims at evaluating the vailability quality and future horizons of potable water in the city of Shatra as a model. This is done in accordance with certain subjective and objective factors alongside the classification map of Shatra as a residential area. This system follows geographical studies specialized in urban construction. The problem of the present paper as well as the data approaching that problem have been chosen from the records of 2018. The researcher offered (919) questionnaire forms to be answered by a sample of dwellers in that area. Besides, the researcher also followed lab analysis of water samples collected from districts in the city of Shatra. GIS technology was also used to arrive at the real water shar
... Show MoreOne of the recent significant but challenging research studies in computational biology and bioinformatics is to unveil protein complexes from protein-protein interaction networks (PPINs). However, the development of a reliable algorithm to detect more complexes with high quality is still ongoing in many studies. The main contribution of this paper is to improve the effectiveness of the well-known modularity density ( ) model when used as a single objective optimization function in the framework of the canonical evolutionary algorithm (EA). To this end, the design of the EA is modified with a gene ontology-based mutation operator, where the aim is to make a positive collaboration between the modularity density model and the proposed
... Show MoreIn this paper we study the effect of the number of training samples for Artificial neural networks ( ANN ) which is necessary for training process of feed forward neural network .Also we design 5 Ann's and train 41 Ann's which illustrate how good the training samples that represent the actual function for Ann's.
This study aims at shedding light on the linguistic significance of collocation networks in the academic writing context. Following Firth’s principle “You shall know a word by the company it keeps.” The study intends to examine three selected nodes (i.e. research, study, and paper) shared collocations in an academic context. This is achieved by using the corpus linguistic tool; GraphColl in #LancsBox software version 5 which was announced in June 2020 in analyzing selected nodes. The study focuses on academic writing of two corpora which were designed and collected especially to serve the purpose of the study. The corpora consist of a collection of abstracts extracted from two different academic journals that publish for writ
... Show MoreSemantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s
... Show MoreResearchers often equate database accounting models in general and the Resources-Events-Agents (REA) accounting model in particular with events accounting as proposed by Sorter (1969). In fact, REA accounting, database accounting, and events accounting are very different. Because REA accounting has become a popular topic in AIS research, it is important to agree on exactly what is meant by certain ideas, both in concept and in historical origin. This article clarifies the analyzing framework of REA accounting model and highlights the differences between the terms events accounting, database accounting, semantically-modeled accounting, and REA accounting. It als
... Show More