Background/Objectives: The purpose of current research aims to a modified image representation framework for Content-Based Image Retrieval (CBIR) through gray scale input image, Zernike Moments (ZMs) properties, Local Binary Pattern (LBP), Y Color Space, Slantlet Transform (SLT), and Discrete Wavelet Transform (DWT). Methods/Statistical analysis: This study surveyed and analysed three standard datasets WANG V1.0, WANG V2.0, and Caltech 101. The features an image of objects in this sets that belong to 101 classes-with approximately 40-800 images for every category. The suggested infrastructure within the study seeks to present a description and operationalization of the CBIR system through automated attribute extraction system premised on CNN infrastructure. Findings: The results acquired through the investigated CBIR system alongside the benchmarked results have clearly indicated that the suggested technique had the best performance with the overall accuracy at 88.29% as opposed to the other sets of data adopted in the experiments. The outstanding results indicate clearly that the suggested method was effective for all the sets of data. Improvements/Applications: As a result of this study, it was found the revealed that the multiple image representation was redundant for extraction accuracy, and the findings from the study indicated that automatically retrieved features are capable and reliable in generating accurate outcomes.
Clinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b
Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with
... Show MoreSeepage through earth dams is one of the most popular causes for earth dam collapse due to internal granule movement and seepage transfer. In earthen dams, the core plays a vital function in decreasing seepage through the dam body and lowering the phreatic line. In this research, an alternative soil to the clay soil used in the dam core has been proposed by conducting multiple experiments to test the permeability of silty and sandy soil with different additives materials. Then the selected sandy soil model was used to represent the dam experimentally, employing a permeability device to measure the amount of water that seeps through the dam's body and to represent the seepage line. A numerical model was adopted using Geo-Studio software i
... Show MoreIn this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, wi
... Show More
Early detection of eye diseases can forestall visual deficiency and vision loss. There are several types of human eye diseases, for example, diabetic retinopathy, glaucoma, arteriosclerosis, and hypertension. Diabetic retinopathy (DR) which is brought about by diabetes causes the retinal vessels harmed and blood leakage in the retina. Retinal blood vessels have a huge job in the detection and treatment of different retinal diseases. Thus, retinal vasculature extraction is significant to help experts for the finding and treatment of systematic diseases. Accordingly, early detection and consequent treatment are fundamental for influenced patients to protect their vision. The aim of this paper is to detect blood vessels from
... Show MoreAs COVID-19 pandemic continued to propagate, millions of lives are currently at risk especially elderly, people with chronic conditions and pregnant women. Iraq is one of the countries affected by the COVID-19 pandemic. Currently, in Iraq, there is a need for a self-assessment tool to be available in hand for people with COVID-19 concerns. Such a tool would guide people, after an automated assessment, to the right decision such as seeking medical advice, self-isolate, or testing for COVID-19. This study proposes an online COVID-19 self-assessment tool supported by the internet of medical things (IoMT) technology as a means to fight this pandemic and mitigate the burden on our nation
Big data usually running in large-scale and centralized key management systems. However, the centralized key management systems are increasing the problems such as single point of failure, exchanging a secret key over insecure channels, third-party query, and key escrow problem. To avoid these problems, we propose an improved certificate-based encryption scheme that ensures data confidentiality by combining symmetric and asymmetric cryptography schemes. The combination can be implemented by using the Advanced Encryption Standard (AES) and Elliptic Curve Diffie-Hellman (ECDH). The proposed scheme is an enhanced version of the Certificate-Based Encryption (CBE) scheme and preserves all its advantages. However
... Show MoreThe paper proposes a methodology for predicting packet flow at the data plane in smart SDN based on the intelligent controller of spike neural networks(SNN). This methodology is applied to predict the subsequent step of the packet flow, consequently reducing the overcrowding that might happen. The centralized controller acts as a reactive controller for managing the clustering head process in the Software Defined Network data layer in the proposed model. The simulation results show the capability of Spike Neural Network controller in SDN control layer to improve the (QoS) in the whole network in terms of minimizing the packet loss ratio and increased the buffer utilization ratio.
In the last two decades, networks had been changed according to the rapid changing in its requirements. The current Data Center Networks have large number of hosts (tens or thousands) with special needs of bandwidth as the cloud network and the multimedia content computing is increased. The conventional Data Center Networks (DCNs) are highlighted by the increased number of users and bandwidth requirements which in turn have many implementation limitations. The current networking devices with its control and forwarding planes coupling result in network architectures are not suitable for dynamic computing and storage needs. Software Defined networking (SDN) is introduced to change this notion of traditional networks by decoupling control and
... Show MoreCognitive radio technology is used to improve spectrum efficiency by having the cognitive radios act as secondary users to access primary frequency bands when they are not currently being used. In general conditions, cognitive secondary users are mobile nodes powered by battery and consuming power is one of the most important problem that facing cognitive networks; therefore, the power consumption is considered as a main constraint. In this paper, we study the performance of cognitive radio networks considering the sensing parameters as well as power constraint. The power constraint is integrated into the objective function named power efficiency which is a combination of the main system parameters of the cognitive network. We prove the exi
... Show More