Preferred Language
Articles
/
uYazmIYBIXToZYALCZPw
Encapsulated deep eutectic solvent for esterification of free fatty acid
...Show More Authors

A novel encapsulated deep eutectic solvent (DES) was introduced for biodiesel production via a two-step process. The DES was encapsulated in medical capsules and were used to reduce the free fatty acid (FFA) content of acidic crude palm oil (ACPO) to the minimum acceptable level (< 1%). The DES was synthesized from methyltriphenylphosphonium bromide (MTPB) and p-toluenesulfonic acid (PTSA). The effects pertaining to different operating conditions such as capsule dosage, reaction time, molar ratio, and reaction temperature were optimized. The FFA content of ACPO was reduced from existing 9.61% to less than 1% under optimum operating conditions. This indicated that encapsulated MTPB-DES performed high catalytic activity in FFA esterification reaction and showed considerable activity even after four consecutive recycling runs. The produced biodiesel after acid esterification and alkaline transesterification met the EN14214 international biodiesel standard specifications. To our best knowledge, this is the first study to introduce an acidic catalyst in capsule form. This method presents a new route for the safe storage of new materials to be used for biofuel production. Conductor-like screening model for real solvents (COSMO-RS) representation of the DES using σ-profile and σ-potential graphs indicated that MTPB and PTSA is a compatible combination due to the balanced presence and affinity towards hydrogen bond donor and hydrogen bond acceptor in each constituent.

Scopus Clarivate Crossref
Publication Date
Sat Mar 30 2019
Journal Name
Studia Universitatis Babeș-bolyai Chemia
"Excess and deviations properties for the binary solvent mixtures of tetrahydrofurfuryl alcohol with some aromatic hydrocarbons at 298.15K "
...Show More Authors

Preview PDF
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Mar 30 2019
Journal Name
Studia Universitatis Babeș-bolyai Chemia
"Excess and deviations properties for the binary solvent mixtures of tetrahydrofurfuryl alcohol with some aromatic hydrocarbons at 298.15K "
...Show More Authors

View Publication
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Proceedings Of The 10th International Joint Conference On Computational Intelligence
Deep Classifier Structures with Autoencoder for Higher-level Feature Extraction
...Show More Authors

View Publication
Crossref (2)
Scopus Crossref
Publication Date
Wed Nov 28 2018
Journal Name
International Journal Of Engineering &amp; Technology
Modified Strut Effectiveness Factor for FRP-Reinforced Concrete Deep Beams
...Show More Authors

A few examinations have endeavored to assess a definitive shear quality of a fiber fortified polymer (FRP)- strengthened solid shallow shafts. Be that as it may, need data announced for examining the solid profound pillars strengthened with FRP bars. The majority of these investigations don't think about the blend of the rigidity of both FRP support and cement. This examination builds up a basic swagger adequacy factor model to evaluate the referenced issue. Two sorts of disappointment modes; concrete part and pulverizing disappointment modes were examined. Protection from corner to corner part is chiefly given by the longitudinal FRP support, steel shear fortification, and cement rigidity. The proposed model has been confirmed util

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Thu Jun 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
An optimized deep learning model for optical character recognition applications
...Show More Authors

The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog

... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Computers, Materials &amp; Continua
Hybrid Deep Learning Enabled Load Prediction for Energy Storage Systems
...Show More Authors

View Publication
Scopus (17)
Crossref (30)
Scopus Clarivate Crossref
Publication Date
Sun Feb 17 2019
Journal Name
Iraqi Journal Of Physics
A study of the solvent effect on the low temperature spectra of benzoanthracene molecules
...Show More Authors

been taken at room temperature down to liquid nitrogen temperature (77K). Polar and nonpolar solvents have been used to study the solvent effect on the absorption and fluorescence spectra of solute molecules. Some of the spectroscopic parameters have been determined as functions of solvent polarity and temperature. The results indicate that the band width FWHM increases with increasing the solvent polarity and temperature, while the peak emission cross section decreases with increasing of solvent polarity and decreases with increasing the temperatures. Clear vibrational structure spectra of benzoanthracene molecules have been observed in Nonane and Hexane solvents at 77K.

View Publication Preview PDF
Crossref
Publication Date
Wed May 10 2023
Journal Name
Diagnostics
A Deep Feature Fusion of Improved Suspected Keratoconus Detection with Deep Learning
...Show More Authors

Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with

... Show More
View Publication
Scopus (29)
Crossref (29)
Scopus Clarivate Crossref
Publication Date
Fri Jul 01 2022
Journal Name
Journal Of Molecular Structure
Interaction behavior of curcumin encapsulated onto functionalized SBA-15 as an efficient carrier and release in drug delivery
...Show More Authors

In this work, mesoporous silica SBA-15 was prepared and functionalized with amine groups (i.e., NH2) to form NH2/SBA-15. The curcumin (CUR) was encapsulated into the surface and pore of NH2/SBA-15 to create CUR@NH2/SBA-15 as an efficient carrier in drug delivery systems (DDSs). The three samples (i.e., SBA-15, NH2/SBA-15, and CUR@NH2/SBA-15) were characterized. The study investigated the effect of the carrier dose, initial CUR concentration, pH, and contact time on the CUR loading efficiency (DLE%) via adsorption. The best DLE% for the SBA-15 and NH2/SBA-15 were found to be 45% and 89.7%, respectively. The Langmuir isotherm had a greater correlation coefficient (R2) of 0.998 for SBA-15. A pseudo-secondorder kinetic model seemed to fit well

... Show More
View Publication
Scopus (89)
Crossref (87)
Scopus Clarivate Crossref
Publication Date
Mon Nov 21 2022
Journal Name
Sensors
Deep Learning-Based Computer-Aided Diagnosis (CAD): Applications for Medical Image Datasets
...Show More Authors

Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes

... Show More
View Publication
Scopus (31)
Crossref (26)
Scopus Clarivate Crossref