A novel encapsulated deep eutectic solvent (DES) was introduced for biodiesel production via a two-step process. The DES was encapsulated in medical capsules and were used to reduce the free fatty acid (FFA) content of acidic crude palm oil (ACPO) to the minimum acceptable level (< 1%). The DES was synthesized from methyltriphenylphosphonium bromide (MTPB) and p-toluenesulfonic acid (PTSA). The effects pertaining to different operating conditions such as capsule dosage, reaction time, molar ratio, and reaction temperature were optimized. The FFA content of ACPO was reduced from existing 9.61% to less than 1% under optimum operating conditions. This indicated that encapsulated MTPB-DES performed high catalytic activity in FFA esterification reaction and showed considerable activity even after four consecutive recycling runs. The produced biodiesel after acid esterification and alkaline transesterification met the EN14214 international biodiesel standard specifications. To our best knowledge, this is the first study to introduce an acidic catalyst in capsule form. This method presents a new route for the safe storage of new materials to be used for biofuel production. Conductor-like screening model for real solvents (COSMO-RS) representation of the DES using σ-profile and σ-potential graphs indicated that MTPB and PTSA is a compatible combination due to the balanced presence and affinity towards hydrogen bond donor and hydrogen bond acceptor in each constituent.
New Schiff bases derivatives [IV]a-e is prepared via condensation of Derythroascorbic acid with p-substituted aldehydes in dry benzene. To obtain these derivatives, the 5,6-O-isopropylidene-L-ascorbic acid[I] was chosen as starting material, compound prepared from the reaction of L-ascorbic acid as starting material. Compound[I] was prepared from the reaction of L-ascorbic acid with dry acetone in the presence of hydrogen chloride. The esterification of hydroxyl groups at C-2 and C-3 positions with excess ofethyl α –chloroacetate in the presence of sodium acetate produce acorresebonding ester [II] , which was condensed with hydrazine hydrate to give new hydrazide [III] . The new Schiff bases [IV]a-e were synthesized by reaction of acid h
... Show MoreCoupling reaction of 4-nitroaniline with 3-aminobenzoic acid provided the corresponding bidentate azo ligand. The prepared ligand was identified by Microelemental Analysis, 1H-NMR, FT-IR, and UV-Vis spectroscopic techniques. Treatment of the prepared ligand with Y(III) and La(III) metal ions in 1:3 M:L ratio in aqueous ethanol at optimum pH yielded a series of neutral complexes with the general formula of [M(L)3]. The prepared complexes were characterized by flame atomic absorption, Elemental Analysis (C, H, N), FT-IR, and UV-Vis spectroscopic methods, as well as conductivity measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods; Beer's law obeyed over a concentration range o
... Show MoreThis study on the plant of Ain –AL Bason Catharanthus roseous showed the ability of callus cells that is produced by In Vitro culture technique and transformed to the accumulated media (MS 40gm/L sucrose ,2gm/L IAA Indole acetic acid , 0.5gm/L Tryptophan) to produce Vinblastine and Vincristine compounds. Extraction, purification and quantitive determination of Vinblastine and Vincristine compounds using High performance liquid chromatography technique (HPLC)were carried out. The results showed that the highest concentration of Vinblastine and Vincristine compounds were ( 4.653,12.5 (ppm /0.5 dry Wight respectively from transformed callus cells from MS 40 gm /L sucrose , 2 gm / L NAA Naphthaline acetic acid .
Mixed ligand metal complexes are synthesized from oxalic acid with Schiff base, and the Schiff base was obtained from trimethoprim and acetylacetone. The synthesized complexes were of the type [M(L1)(L2)], where the metal, M, is Ni(II), Cu(II), Cr(III), and Zn(II), L1 corresponds to the trimethoprim ((Z)-4-((4-amino-5-(3,4,5- trimethoxybenzyl)pyrimidine-2-yl)imino)pentane-2-one) as the first ligand and L2 represent the oxalate anion (𝐶𝑂 ) as a second ligand. Characterization of the prepared compounds was performed by elemental analysis, molar conductivity, magnetic measurements, 1H-NMR, 13C-NMR, FT-IR, and Ultraviolet-visible (UV-Vis) spectral studies. The recorded infrared data is reinforced with density functional th
... Show MoreA novel Schiff base ligand (DBC) synthesized from 4-chlorobenzoic acid, along with its Cu (II) and Co (II) complexes, was prepared and characterized using FT-IR, 1H and 13C-NMR, UV-Vis spectroscopy, as well as magnetic and conductivity measurements. Based on this, a tetrahedral structure of [M(DBC)Cl2] was proposed for the complexes. Antioxidant activity of the compounds was assessed and compared to ascorbic acid, revealing that the copper complex exhibited superior antioxidant properties compared to the cobalt complex and the ligand. Furthermore, the antibiofilm potential of the copper and cobalt complexes was assessed against five clinically relevant bacterial species (P.aeruginosa, E.coli, K.pneumoniae, S.aureus and S.typhi) usin
... Show MoreMixed ligand complexes of bivalent metal ions, viz; Co(II), Ni(II), Cu(II) and Zn(II) of the composition [M(A)2((PBu3)2]in(1:2:2)(M:A:(PBu3). molar ratio, (where A- Anthranilate ion ,(PBu3)= tributylphosphine. M= Co(II),Ni(II),Cu(II) and Zn(II). The prepared complexes were characterized using flame atomic absorption, by FT-IR, UV/visible spectra methods as well as magnetic susceptibility and conductivity measurements. The metal complexes were tested in vitro against three types of pathogenic bacteria microorganisms: (Staphylococcus, Klebsiella SPP .and Bacillas)to assess their antimicrobial properties. Results. The study shows that all complexes have octahedral geometry; in addition, it has high activity against tested bacteria. Based on th
... Show MoreLaser shock peening (LSP) is deemed as a deep-rooted technology for stimulating compressive residual stresses below the surface of metallic elements. As a result, fatigue lifespan is improved, and the substance properties become further resistant to wear and corrosion. The LSP provides more unfailing surface treatment and a potential decrease in microstructural damage. Laser shock peening is a well-organized method measured up to the mechanical shoot peening. This kind of surface handling can be fulfilled via an intense laser pulse focused on a substantial surface in extremely shorter intervals. In this work, Hydrofluoric Acid (HF) and pure water as a coating layer were utilized as a new technique to improve the properti
... Show More