n this paper, we formulate three mathematical models using spline functions, such as linear, quadratic and cubic functions to approximate the mathematical model for incoming water to some dams. We will implement this model on dams of both rivers; dams on the Tigris are Mosul and Amara while dams on the Euphrates are Hadetha and Al-Hindya.
This investigation was carried out to study the treatment and recycling of wastewater in the cotton textile industry for an effluent containing three dyes: direct blue, sulphur black and vat yellow. The reuse of such effluent can only be made possible by appropriate treatment method such as chemical coagulation. Ferrous and ferric sulphate with and without calcium hydroxide were employed in this study as the chemical coagulants.
The results showed that the percentage removal of direct blue ranged between 91.4 and 94 , for sulphur black ranged between 98.7 and 99.5 while for vat yellow it was between 97 and 99.
Association rules mining (ARM) is a fundamental and widely used data mining technique to achieve useful information about data. The traditional ARM algorithms are degrading computation efficiency by mining too many association rules which are not appropriate for a given user. Recent research in (ARM) is investigating the use of metaheuristic algorithms which are looking for only a subset of high-quality rules. In this paper, a modified discrete cuckoo search algorithm for association rules mining DCS-ARM is proposed for this purpose. The effectiveness of our algorithm is tested against a set of well-known transactional databases. Results indicate that the proposed algorithm outperforms the existing metaheuristic methods.
Recognizing speech emotions is an important subject in pattern recognition. This work is about studying the effect of extracting the minimum possible number of features on the speech emotion recognition (SER) system. In this paper, three experiments performed to reach the best way that gives good accuracy. The first one extracting only three features: zero crossing rate (ZCR), mean, and standard deviation (SD) from emotional speech samples, the second one extracting only the first 12 Mel frequency cepstral coefficient (MFCC) features, and the last experiment applying feature fusion between the mentioned features. In all experiments, the features are classified using five types of classification techniques, which are the Random Forest (RF),
... Show MoreBioinformatics is one of the computer science and biology sub-subjects concerned with the processes applied to biological data, such as gathering, processing, storing, and analyzing it. Biological data (ribonucleic acid (RNA), deoxyribonucleic acid (DNA), and protein sequences) has many applications and uses in many fields (data security, data segmentation, feature extraction, etc.). DNA sequences are used in the cryptography field, using the properties of biomolecules as the carriers of the data. Messenger RNA (mRNA) is a single strand used to make proteins containing genetic information. The information recorded from DNA also carries messages from DNA to ribosomes in the cytosol. In this paper, a new encryption technique bas
... Show MoreSecure data communication across networks is always threatened with intrusion and abuse. Network Intrusion Detection System (IDS) is a valuable tool for in-depth defense of computer networks. Most research and applications in the field of intrusion detection systems was built based on analysing the several datasets that contain the attacks types using the classification of batch learning machine. The present study presents the intrusion detection system based on Data Stream Classification. Several data stream algorithms were applied on CICIDS2017 datasets which contain several new types of attacks. The results were evaluated to choose the best algorithm that satisfies high accuracy and low computation time.
Document analysis of images snapped by camera is a growing challenge. These photos are often poor-quality compound images, composed of various objects and text; this makes automatic analysis complicated. OCR is one of the image processing techniques which is used to perform automatic identification of texts. Existing image processing techniques need to manage many parameters in order to clearly recognize the text in such pictures. Segmentation is regarded one of these essential parameters. This paper discusses the accuracy of segmentation process and its effect over the recognition process. According to the proposed method, the images were firstly filtered using the wiener filter then the active contour algorithm could b
... Show MoreKeywords provide the reader with a summary of the contents of the document and play a significant role in information retrieval systems, especially in search engine optimization and bibliographic databases. Furthermore keywords help to classify the document into the related topic. Keywords extraction included manual extracting depends on the content of the document or article and the judgment of its author. Manual extracting of keywords is costly, consumes effort and time, and error probability. In this research an automatic Arabic keywords extraction model based on deep learning algorithms is proposed. The model consists of three main steps: preprocessing, feature extraction and classification to classify the document
... Show MoreVisual media is a better way to deliver the information than the old way of "reading". For that reason with the wide propagation of multimedia websites, there are large video library’s archives, which came to be a main resource for humans. This research puts its eyes on the existing development in applying classical phrase search methods to a linked vocal transcript and after that it retrieves the video, this an easier way to search any visual media. This system has been implemented using JSP and Java language for searching the speech in the videos
Social Networking has dominated the whole world by providing a platform of information dissemination. Usually people share information without knowing its truthfulness. Nowadays Social Networks are used for gaining influence in many fields like in elections, advertisements etc. It is not surprising that social media has become a weapon for manipulating sentiments by spreading disinformation. Propaganda is one of the systematic and deliberate attempts used for influencing people for the political, religious gains. In this research paper, efforts were made to classify Propagandist text from Non-Propagandist text using supervised machine learning algorithms. Data was collected from the news sources from July 2018-August 2018. After annota
... Show More