Background: Atherosclerosis is well known related to age and certain cardiovascular diseases. Aging is one reason of arteries function deterioration which can cause loss of compliance and plaque accumulation, this effect increases by the presence of certain diseases such as hypertension and diabetes disease. Aim: To investigate the reduction of blood supply to the brain in patients with diabetes and hypertension with age and the role of resistive index in the diagnosis of reduced blood flow. Method: Patients with both diseases diabetic and hypertension were classified according to their age to identify the progression of the disease and factors influencing the carotid artery blood flow. By using ultrasound and standard Doppler techniques, the following parameters were measured, lumen Diameter (D), Intima – media thickness (IMT), peak systolic velocity (PSV), end diastolic velocity (EDV), Pulsatility Index (PI), Resistive Index (RI), velocity gradient, and the flow rate. Results: Results show that a small insignificant increase in the lumen diameter (3.49%), (p value > 0.05) between the old age group and the younger group (35- 55) and (56-75) year old. A significant increase in the intima-media (IMT) thickness, end diastolic velocity (EDV) and RI between both age groups was (33.78%), (-31.76%) and (10%) respectively with significant (p value <0.05). A large reduction for old age group in peek systolic velocity (PSV) (-19.71%), Pressure gradient (-31.11%) and flow rate (-20.91%) with (p>0.05) but all were statistically close to significance. Conclusion: The increased thickness in IMT did not influence the lumen diameter significantly. RI has the prime effect in the reduction of the blood flow which influenced blood supply to the brain and can indicate the effectiveness of intima media thickness on flow impairment. The changes in PSV, EDV, RI, and PI are also related with reduced compliance
Objective: The objective of the present study was to design and optimize oral fast dissolving film (OFDF) of practically insoluble drug lafutidine in order to enhance bioavailability and patient compliance especially for a geriatric and unconscious patient who are suffering from difficulty in swallowing.Methods: The films were prepared by a solvent casting method using low-grade hydroxyl propyl methyl cellulose (HPMC E5), polyvinyl alcohol (PVA), and sodium carboxymethyl cellulose (SCMC) as film forming polymers. Polyethylene glycol 400 (PEG400), propylene glycol (PG) and glycerin were used as a plasticizer to enhance the film forming properties of the polymer. Tween 80 (1% solution) and poloxamer407 were used as a surfactant, citri
... Show MoreExpanded use of antibiotics may increase the ability of pathogenic bacteria to develop antimicrobial resistance. Greater attention must be paid to applying more sustainable techniques for treating wastewater contaminated with antibiotics. Semiconductor photocatalytic processes have proven to be the most effective methods for the degradation of antibiotics. Thus, constructing durable and highly active photocatalytic hybrid materials for the photodegradation of antibiotic pollutants is challenging. Herein, FeTiO3/Fe-doped g-C3N4 (FTO/FCN) heterojunctions were designed with different FTO to FCN ratios by matching the energy level of semiconductors, thereby developing effective direct Z-type heterojunctions. The photodegradation behaviors of th
... Show MoreSome genetic factors are not only involved in some autoimmune diseases but also interfere with their treatment, Such as Crohn's disease (CD), Rheumatoid Arthritis (RA), ankylosing spondylitis (AS), and psoriasis (PS). Tumor Necrosis Factor (TNF) is a most important pro-inflammatory cytokine, which has been recognized as a main factor that participates in the pathogenesis and development of autoimmune disorders. Therefore, TNF could be a prospective target for treating these disorders, and many anti-TNF were developed to treat these disorders. Although the high efficacy of many anti-TNF biologic medications, the Patients' clinical responses to the autoimmune treatment showed significant heterogeneity. Two types of TNF receptor (TNFR); 1 an
... Show MoreIn this paper, we used two monomers, 3,3',4,4'-benzophenone tetracarboxylic dianhydride (BTDA) and m,m'-diaminobenzophenone (m, m’-DABP), to produce polyamide acid and then converted it to polyimide (PI). The effects of phosphoric acid (H3PO4) molarity (1, 2, and 3 M) on the structural, thermal, mechanical, and electrical characteristics of the polyimides/polyaniline (PI/PANI) nanocomposites were studied. Two sharp reflection peaks were developed by the addition of PANI to PI. When 3 M H3PO4 is added, the crystalline sharp peak loses some of its intensity. The complex formation of PI/PANI-H3PO4 was confi
... Show MoreA new series of Sulfamethoxazole derivatives was prepared and examined for antifibrinolytic and antimicrobial activities. Sulfamethoxazole derivatives bear heterocyclic moieties such as 1,3,4-thiadiazine {3}, pyrazolidine-3,5-diol {4} 6-hydroxy-1,3,4-thiadiazinane-2-thione {5} and [(3-methyl-5-oxo-4,5-dihydro-1H-pyrazol-4-yl)diazenyl] {8}. Their structures were elucidated by spectral methods (FT-IR, H1-NMR). Physical properties are also determined for all compound derivatives. Recently prepared compounds were tested for their antimicrobial activity in the laboratory. Each screened compound showed good tendency to moderate antimicrobial activity.
In this research, new compounds were synthesized via the reaction of dichloroacetic acid with two moles of piperidine. The novel acid 1 was converted to its ester 2. Acid hydrizide 3 was prepared by the reaction of hydrazine hydrate with new ester 2, which was later used to prepare derivatives of Schiff bases 4-13. In the last step, Schiff bases and thioglycolic acid were reacted to give thiazolidine derivatives 14-23. All these compounds were diagnosed using melting points, FTIR, 1HNMR and mass spectroscopy. Scheme 1 shows all the synthesized compounds' reaction steps and structures. Keywords: Thiazolidine; Schiff bases; biological activity; piperidine; dichloroacetic acid.