Tor (The Onion Routing) network was designed to enable users to browse the Internet anonymously. It is known for its anonymity and privacy security feature against many agents who desire to observe the area of users or chase users’ browsing conventions. This anonymity stems from the encryption and decryption of Tor traffic. That is, the client’s traffic should be subject to encryption and decryption before the sending and receiving process, which leads to delay and even interruption in data flow. The exchange of cryptographic keys between network devices plays a pivotal and critical role in facilitating secure communication and ensuring the integrity of cryptographic procedures. This essential process is time-consuming, which causes delay and discontinuity of data flow. To overcome delay or interruption problems, we utilized the Software-Defined Network (SDN), Machine Learning (ML), and Blockchain (BC) techniques, which support the Tor network to intelligently speed up exchanging the public key via the proactive processing of the Tor network security management information. Consequently, the combination network (ITor-SDN) keeps data flow continuity to a Tor client. We simulated and emulated the proposed network by using Mininet and Shadow simulations. The findings of the performed analysis illustrate that the proposed network architecture enhances the overall performance metrics, showcasing a remarkable advancement of around 55%. This substantial enhancement is achieved through the seamless execution of the innovative ITor-SDN network combination approach.
Abstract:
Research Topic: Ruling on the sale of big data
Its objectives: a statement of what it is, importance, source and governance.
The methodology of the curriculum is inductive, comparative and critical
One of the most important results: it is not permissible to attack it and it is a valuable money, and it is permissible to sell big data as long as it does not contain data to users who are not satisfied with selling it
Recommendation: Follow-up of studies dealing with the provisions of the issue
Subject Terms
Judgment, Sale, Data, Mega, Sayings, Jurists
The bandwidth requirements of telecommunication network users increased rapidly during the last decades. Optical access technologies must provide the bandwidth demand for each user. The passive optical access networks (PONs) support a maximum data rate of 100 Gbps by using the Orthogonal Frequency Division Multiplexing (OFDM) technique in the optical access network. In this paper, the optical broadband access networks with many techniques from Time Division Multiplexing Passive Optical Networks (TDM PON) to Orthogonal Frequency Division Multiplex Passive Optical Networks (OFDM PON) are presented. The architectures, advantages, disadvantages, and main parameters of these optical access networks are discussed and reported which have many ad
... Show MoreThis paper presents a minimum delay congestion control in differentiated Service communication networks. The premium and ordinary passage services based fluid flow theory is used to build the suggested structure in high efficient manage. The established system is capable to adeptly manage both the physical network resource limitations and indefinite time delay related to networking system structure.
A comprehensive review focuses on 3D network-on-chip (NoC) simulators and plugins while paying attention to the 2D simulators as the baseline is presented. Discussions include the programming languages, installation configuration, platforms and operating systems for the respective simulators. In addition, the simulator’s properties and plugins for design metrics evaluations are addressed. This review is intended for the early career researchers starting in 3D NoC, offering selection guidelines on the right tools for the targeted NoC architecture, design, and requirements.
The speech recognition system has been widely used by many researchers using different
methods to fulfill a fast and accurate system. Speech signal recognition is a typical
classification problem, which generally includes two main parts: feature extraction and
classification. In this paper, a new approach to achieve speech recognition task is proposed by
using transformation techniques for feature extraction methods; namely, slantlet transform
(SLT), discrete wavelet transforms (DWT) type Daubechies Db1 and Db4. Furthermore, a
modified artificial neural network (ANN) with dynamic time warping (DTW) algorithm is
developed to train a speech recognition system to be used for classification and recognition
purposes. T
In this paper, we investigate and characterize the effects of multi-channel and rendezvous protocols on the connectivity of dynamic spectrum access networks using percolation theory. In particular, we focus on the scenario where the secondary nodes have plenty of vacant channels to choose from a phenomenon which we define as channel abundance. To cope with the existence of multi-channel, we use two types of rendezvous protocols: naive ones which do not guarantee a common channel and advanced ones which do. We show that, with more channel abundance, even with the use of either type of rendezvous protocols, it becomes difficult for two nodes to agree on a common channel, thereby, potentially remaining invisible to each other. We model this in
... Show MoreIn many oil-recovery systems, relative permeabilities (kr) are essential flow factors that affect fluid dispersion and output from petroleum resources. Traditionally, taking rock samples from the reservoir and performing suitable laboratory studies is required to get these crucial reservoir properties. Despite the fact that kr is a function of fluid saturation, it is now well established that pore shape and distribution, absolute permeability, wettability, interfacial tension (IFT), and saturation history all influence kr values. These rock/fluid characteristics vary greatly from one reservoir region to the next, and it would be impossible to make kr measurements in all of them. The unsteady-state approach was used to calculate the relat
... Show MoreAbstract
The research Compared two methods for estimating fourparametersof the compound exponential Weibull - Poisson distribution which are the maximum likelihood method and the Downhill Simplex algorithm. Depending on two data cases, the first one assumed the original data (Non-polluting), while the second one assumeddata contamination. Simulation experimentswere conducted for different sample sizes and initial values of parameters and under different levels of contamination. Downhill Simplex algorithm was found to be the best method for in the estimation of the parameters, the probability function and the reliability function of the compound distribution in cases of natural and contaminateddata.
... Show More
Evaporation is one of the major components of the hydrological cycle in the nature, thus its accurate estimation is so important in the planning and management of the irrigation practices and to assess water availability and requirements. The aim of this study is to investigate the ability of fuzzy inference system for estimating monthly pan evaporation form meteorological data. The study has been carried out depending on 261 monthly measurements of each of temperature (T), relative humidity (RH), and wind speed (W) which have been available in Emara meteorological station, southern Iraq. Three different fuzzy models comprising various combinations of monthly climatic variables (temperature, wind speed, and relative humidity) were developed
... Show More