Tor (The Onion Routing) network was designed to enable users to browse the Internet anonymously. It is known for its anonymity and privacy security feature against many agents who desire to observe the area of users or chase users’ browsing conventions. This anonymity stems from the encryption and decryption of Tor traffic. That is, the client’s traffic should be subject to encryption and decryption before the sending and receiving process, which leads to delay and even interruption in data flow. The exchange of cryptographic keys between network devices plays a pivotal and critical role in facilitating secure communication and ensuring the integrity of cryptographic procedures. This essential process is time-consuming, which causes delay and discontinuity of data flow. To overcome delay or interruption problems, we utilized the Software-Defined Network (SDN), Machine Learning (ML), and Blockchain (BC) techniques, which support the Tor network to intelligently speed up exchanging the public key via the proactive processing of the Tor network security management information. Consequently, the combination network (ITor-SDN) keeps data flow continuity to a Tor client. We simulated and emulated the proposed network by using Mininet and Shadow simulations. The findings of the performed analysis illustrate that the proposed network architecture enhances the overall performance metrics, showcasing a remarkable advancement of around 55%. This substantial enhancement is achieved through the seamless execution of the innovative ITor-SDN network combination approach.
Objective: Breast cancer is regarded as a deadly disease in women causing lots of mortalities. Early diagnosis of breast cancer with appropriate tumor biomarkers may facilitate early treatment of the disease, thus reducing the mortality rate. The purpose of the current study is to improve early diagnosis of breast by proposing a two-stage classification of breast tumor biomarkers fora sample of Iraqi women.
Methods: In this study, a two-stage classification system is proposed and tested with four machine learning classifiers. In the first stage, breast features (demographic, blood and salivary-based attributes) are classified into normal or abnormal cases, while in the second stage the abnormal breast cases are
... Show MoreThe objective of this study was to assess the nutritional status of childs of nurseries in Baghdad city so that an early detection of malnutrition cases could be carried out. The results revealed that the daily consumption of food calories, protein, fat and carbohydrate were 1180.5 calories, 27.2gm, 38gm and 180gm, respectively, which were less than the RDA values and the percentages of these nutrients supplied by the food intake were 90.8, 83.7, 87.3 and 90.3%, respectively. It was also demonstrated that the highest percentages of stunting, underweight and wasting, which amounted to 32, 22.7 and 1.5%, respectively, were among those childs who obtained inadequate calories, while the percentages of the forementioned malnutrition cases amon
... Show MoreThe research focuses on determination of best location of high elevated tank using the required head of pump as a measure for this purpose. Five types of network were used to find the effect of the variation in the discharge and the node elevation on the best location. The most weakness point was determined for each network. Preliminary tank locations were chosen for test along the primary pipe with same interval distance. For each location, the water elevation in tank and pump head was calculated at each hour depending on the pump head that required to achieve the minimum pressure at the most weakness point. Then, the sum of pump heads through the day was determined. The results proved that there is a most economical lo
... Show MoreBased on a finite element analysis using Matlab coding, eigenvalue problem has been formulated and solved for the buckling analysis of non-prismatic columns. Different numbers of elements per column length have been used to assess the rate of convergence for the model. Then the proposed model has been used to determine the critical buckling load factor () for the idealized supported columns based on the comparison of their buckling loads with the corresponding hinge supported columns . Finally in this study the critical buckling factor () under end force (P) increases by about 3.71% with the tapered ratio increment of 10% for different end supported columns and the relationship between normalized critical load and slenderness ratio was g
... Show MoreDifferent additives are used in drilling fluids when the demanded properties cannot be gotten with clays. Drilling muds needs several additives and materials to give good characteristics. There are local alternatives more suitable for enhancing the rheology and filtration of drilling fluids. An experimental work had been conducted to assess the suitability of using potato starch to enhance rheological properties and filtration in drilling mud. This study investigated the potato starch as a viscosifier and fluid losses agent in drilling fluid. Results from this study proved that rheological properties of potato starch mud increased when pH of drilling fluid is increased. Potato starch could be used to enhance gel strength at low pH
... Show MoreSupport vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in compa
... Show MoreDifferent additives are used in drilling fluids when the demanded properties cannot be gotten with clays. Drilling muds needs several additives and materials to give good characteristics. There are local alternatives more suitable for enhancing the rheology and filtration of drilling fluids. An experimental work had been conducted to assess the suitability of using potato starch to enhance rheological properties and filtration in drilling mud. This study investigated the potato starch as a viscosifier and fluid losses agent in drilling fluid. Results from this study proved that rheological properties of potato starch mud increased when pH of drilling fluid is increased. Potato starch could be used to enhance gel strength at low pH
... Show MoreThe study examined the assessment of raw water and drinking water projects of Diyala Governorate for the year 2017, amounting to (24) projects, The average per capita supply of potable water (0.396 m3 / day/person), which is less than the global standard for the average per capita of drinking water, and constitute water rumors within the network of water transport in the province (3%), and the water of raw and drinking value within the limits allowed to be used by Iraq and the global indicators of {Total acidity, alkaline, acidic function, chlorides, magnesium, Electrical conductivity, total soluble salts, sodium, potassium, sulfates, turbidity other than (raw water)}. While the index of calcium only a value higher than the limits
... Show MoreThis article aims to explore the importance of estimating the a semiparametric regression function ,where we suggest a new estimator beside the other combined estimators and then we make a comparison among them by using simulation technique . Through the simulation results we find that the suggest estimator is the best with the first and second models ,wherealse for the third model we find Burman and Chaudhuri (B&C) is best.
