Identifying the total number of fruits on trees has long been of interest in agricultural crop estimation work. Yield prediction of fruits in practical environment is one of the hard and significant tasks to obtain better results in crop management system to achieve more productivity with regard to moderate cost. Utilized color vision in machine vision system to identify citrus fruits, and estimated yield information of the citrus grove in-real time. Fruit recognition algorithms based on color features to estimate the number of fruit. In the current research work, some low complexity and efficient image analysis approach was proposed to count yield fruits image in the natural scene. Semi automatic segmentation and yield calculation of fruit based on shape analysis is presented. Color and shape analysis was utilized to segment the images of different fruits like apple, pomegranate obtained under different lighting conditions. First the input sectional tree image was converted from RGB colour space into the colour space transform (i.e., YUV, YIQ, or YCbCr). The resultant image was then applied to the algorithm for fruit segmentation. After it is applied Morphological Operations which is enhanced image then execute Blob counting method which identify the object and count the number of it. Accuracy of this algorithm used in this thesis is 82.21% for images that have been scanned.
Building a system to identify individuals through their speech recording can find its application in diverse areas, such as telephone shopping, voice mail and security control. However, building such systems is a tricky task because of the vast range of differences in the human voice. Thus, selecting strong features becomes very crucial for the recognition system. Therefore, a speaker recognition system based on new spin-image descriptors (SISR) is proposed in this paper. In the proposed system, circular windows (spins) are extracted from the frequency domain of the spectrogram image of the sound, and then a run length matrix is built for each spin, to work as a base for feature extraction tasks. Five different descriptors are generated fro
... Show MoreHM Al-Dabbas, RA Azeez, AE Ali, Iraqi Journal of Science, 2023
Nitrogen (N) is a key growth and yield-limiting factor in cultivated rice areas. This study has been conducted to evaluate the effects of different conditions of N application on rice yield and yield components (Shiroudi cultivar) in Babol (Mazandaran, Iran) during the 2015- 2016 season. A factorial experiment executed of a Randomized Complete Block Design (RCBD) used in three iterations. In the first factor, treatments were four N amounts (including 50, 90, 130, and 170 kg N ha-1), while in the second factor, the treatments consisted of four different fertilizer splitting methods, including T1:70 % at the basal stage + 30 % at the maximum tillering stage, T2:1/3 at the basal stage + 1/3 at the maximum ti
... Show MoreA QR code is a type of barcode that can hold more information than the familiar kind scanned at checkouts around the world. The “QR” stands for “Quick Response”, a reference to the speed at which the large amounts of information they contain can be decoded by scanners. They are being widely used for advertising campaigns, linking to company websites, contest sign-up pages and online menus. In this paper, we propose an efficient module to extract QR code from background and solve problem of rotation in case of inaccurate image taken from mobile camera.
This paper introduced a hybrid technique for lossless image compression of natural and medical images; it is based on integrating the bit plane slicing and Wavelet transform along with a mixed polynomial of linear and non linear base. The experiments showed high compression performance with fully grunted reconstruction.
Analysis of image content is important in the classification of images, identification, retrieval, and recognition processes. The medical image datasets for content-based medical image retrieval ( are large datasets that are limited by high computational costs and poor performance. The aim of the proposed method is to enhance this image retrieval and classification by using a genetic algorithm (GA) to choose the reduced features and dimensionality. This process was created in three stages. In the first stage, two algorithms are applied to extract the important features; the first algorithm is the Contrast Enhancement method and the second is a Discrete Cosine Transform algorithm. In the next stage, we used datasets of the medi
... Show More