Preferred Language
Articles
/
uRc0Go4BVTCNdQwCZDEd
Deep Learning Approach for Oil Pipeline Leakage Detection Using Image-Based Edge Detection Techniques
...Show More Authors

Natural gas and oil are one of the mainstays of the global economy. However, many issues surround the pipelines that transport these resources, including aging infrastructure, environmental impacts, and vulnerability to sabotage operations. Such issues can result in leakages in these pipelines, requiring significant effort to detect and pinpoint their locations. The objective of this project is to develop and implement a method for detecting oil spills caused by leaking oil pipelines using aerial images captured by a drone equipped with a Raspberry Pi 4. Using the message queuing telemetry transport Internet of Things (MQTT IoT) protocol, the acquired images and the global positioning system (GPS) coordinates of the images' acquisition are sent to the base station. Using deep learning approaches such as holistically-nested edge detection (HED) and extreme inception (Xception) networks, images are analyzed at the base station to identify contours using dense extreme inception networks for edge detection (DexiNed). This algorithm is capable of finding many contours in images. Moreover, the CIELAB color space (LAB) is employed to locate black-colored contours, which may indicate oil spills. The suggested method involves eliminating smaller contours to calculate the area of larger contours. If the contour's area exceeds a certain threshold, it is classified as a spill; otherwise, it is stored in a database for further review. In the experiments, spill sizes of 1m2, 2m2, and 3m2 were established at three separate test locations. The drone was operated at three different heights (5 m, 10 m, and 15 m) to capture the scenes. The results show that efficient detection can be achieved at a height of 10 meters using the DexiNed algorithm. Statistical comparison with other edge detection methods using basic metrics, such as perimage best threshold (OIS = 0.867), fixed contour threshold (ODS = 0.859), and average precision (AP = 0.905), validates the effectiveness of the DexiNed algorithm in generating thin edge maps and identifying oil slicks. © 2023 Lavoisier. All rights reserved.

Scopus Crossref
View Publication
Publication Date
Wed Jul 01 2015
Journal Name
Journal Of Engineering
Desulfurization of AL-Ahdab Crude Oil using Oxidative Processes
...Show More Authors

Two different oxidative desulfurization strategies based on oxidation/adsorption or oxidation/extraction were evaluated for the desulfurization of AL-Ahdab (AHD) sour crude oil (3.9wt% sulfur content). In the oxidation process, a homogenous oxidizing agent comprising of hydrogen peroxide and formic acid was used. Activated carbons were used as sorbent/catalyst in the oxidation/adsorption process while acetonitrile was used as an extraction solvent in the oxidation/extraction process. For the oxidation/adsorption scheme, the experimental results indicated that the oxidation desulfurization efficiency was enhanced on using activated carbon as catalyst/sorbent. The effects of the operating conditions (contact time, temperat

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 31 2015
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Desulfurization of gas oil using a solar photocatalytic microreactor
...Show More Authors

The present work is devoted to investigate the performance of a homemade Y-shape catalytic microreactor for degradation of dibenzothiophene (DBT), as a model of sulphur compounds including in gas oil, utilizing solar incident energy. The microchannel was coated with TiO2 nanoparticles which were used as a photocatalyst. Performance of the microreactor was investigated using different conditions (e.g., DBT concentration, LHSV, operating temperature, and (H2O2/DBT) ratio). Our experiments show that, in the absence of UV light, no reaction takes place. The results revealed that outlet concentration of DBT decreases as the mean residence time in the microreactor increases. Also, it was noted that operating temperature s

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 29 2020
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Dissolving Precipitated Asphaltenes Inside Oil Reservoirs Using Local Solvents
...Show More Authors

There are several oil reservoirs that had severe from a sudden or gradual decline in their production due to asphaltene precipitation inside these reservoirs. Asphaltene deposition inside oil reservoirs causes damage for permeability and skin factor, wettability alteration of a reservoir, greater drawdown pressure. These adverse changing lead to flow rate reduction, so the economic profit will drop. The aim of this study is using local solvents: reformate, heavy-naphtha and binary of them for dissolving precipitated asphaltene inside the oil reservoir. Three samples of the sand pack had been prepared and mixed with a certain amount of asphaltene. Permeability of these samples calculated before and after mixed with asphaltenes. Then, the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jun 01 2010
Journal Name
Al-khwarizmi Engineering Journal
355nm Wavelength Generation of Nd:YAG Laser Using Olive Oil
...Show More Authors

 This project introduces a prospective material for photonic laser applications. The material is olive oil which is classified as organic compound, having a good nonlinear optical properties candidate to be used in photonic applications. A high purity sample of olive oil has been used. The theoretical calculation to generate third harmonic wave using olive oil has been determine using MATLAB program. THG (λ=355nm) intensity has been determined at two cases of sample thicknesses 1mm and 10mm. The minimum threshold incident intensity to obtain THG intensity are equal Iω=7530 mW/cm2 at L=1mm and Iω= 6220 mW/cm2 at L=10mm. The possibility of generation of third harmonic in olive oil inside

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 07 2022
Journal Name
International Journal Of Early Childhood Special Education
Hierarchical learning and its effect on learning some basic skills in fencing for third stage students.
...Show More Authors

MH Hamzah, AF Abbas, International Journal of Early Childhood Special Education, 2022

View Publication
Publication Date
Mon Aug 01 2016
Journal Name
Ieee Transactions On Neural Systems And Rehabilitation Engineering
Transradial Amputee Gesture Classification Using an Optimal Number of sEMG Sensors: An Approach Using ICA Clustering
...Show More Authors

View Publication
Scopus (145)
Crossref (145)
Scopus Clarivate Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Journal Of Engineering
Development of Bridges Maintenance Management System based on Geographic Information System Techniques (Case study: Al-Muthanna \ Iraq)
...Show More Authors

A Geographic Information System (GIS) is a computerized database management system for accumulating, storage, retrieval, analysis, and display spatial data. In general, GIS contains two broad categories of information, geo-referenced spatial data and attribute data. Geo-referenced spatial data define objects that have an orientation and relationship in two or three-dimensional space, while attribute data is qualitative data that can be counted for recording and analysis. The main aim of this research is to reveal the role of GIS technology in the enhancement of bridge maintenance management system components such as the output results, and make it more interpretable through dynamic colour coding and more sophisticated visualization

... Show More
View Publication
Crossref (5)
Crossref
Publication Date
Mon Dec 01 2025
Journal Name
Journal Of Physics: Conference Series
Advanced Machine Learning Models for Banana Sweetness Classification
...Show More Authors

It takes a lot of time to classify the banana slices by sweetness level using traditional methods. By assessing the quality of fruits more focus is placed on its sweetness as well as the color since they affect the taste. The reason for sorting banana slices by their sweetness is to estimate the ripeness of bananas using the sweetness and color values of the slices. This classifying system assists in establishing the degree of ripeness of bananas needed for processing and consumption. The purpose of this article is to compare the efficiency of the SVM-linear, SVM-polynomial, and LDA classification of the sweetness of banana slices by their LRV level. The result of the experiment showed that the highest accuracy of 96.66% was achieved by the

... Show More
View Publication
Scopus Crossref
Publication Date
Tue Feb 17 2026
Journal Name
Journal Of Baghdad College Of Dentistry
Validity of 3D Reconstructed Computed Tomographic Image in Using Craniometrical Measurements of the Skull for Sex Differentiation (An Iraqi Study)
...Show More Authors

Background: The skull offers a high resistance of adverse environmental conditions over time, resulting in the greater stability of the dimorphic features as compared to other skeletal bony pieces. Sex determination of human skeletal considered an initial step in its identification. The present study is undertaken to evaluate the validity of 3D reconstructed computed tomographic images in sex differentiation by using craniometrical measurements at various parts of the skull. Materials and Method: 3D reconstructed computed tomographic scanning of 100 Iraqi subject, (50 males and 50 females) were analyzed with their age range from20-70 years old. Craniometrical linear measurements were located and marked on both side of the 3D skull images.

... Show More
View Publication Preview PDF
Publication Date
Tue Jun 24 2025
Journal Name
Food And Bioprocess Technology
Classification of Apple Slices Treated by Atmospheric Plasma Jet for Post-harvest Processes Using Image Processing and Convolutional Neural Networks
...Show More Authors
Abstract<p>Apple slice grading is useful in post-harvest operations for sorting, grading, packaging, labeling, processing, storage, transportation, and meeting market demand and consumer preferences. Proper grading of apple slices can help ensure the quality, safety, and marketability of the final products, contributing to the post-harvest operations of the overall success of the apple industry. The article aims to create a convolutional neural network (CNN) model to classify images of apple slices after immersing them in atmospheric plasma at two different pressures (1 and 5 atm) and two different immersion times (3 and again 6 min) once and in filtered water based on the hardness of the slices usin</p> ... Show More
View Publication
Scopus Clarivate Crossref