Natural gas and oil are one of the mainstays of the global economy. However, many issues surround the pipelines that transport these resources, including aging infrastructure, environmental impacts, and vulnerability to sabotage operations. Such issues can result in leakages in these pipelines, requiring significant effort to detect and pinpoint their locations. The objective of this project is to develop and implement a method for detecting oil spills caused by leaking oil pipelines using aerial images captured by a drone equipped with a Raspberry Pi 4. Using the message queuing telemetry transport Internet of Things (MQTT IoT) protocol, the acquired images and the global positioning system (GPS) coordinates of the images' acquisition are sent to the base station. Using deep learning approaches such as holistically-nested edge detection (HED) and extreme inception (Xception) networks, images are analyzed at the base station to identify contours using dense extreme inception networks for edge detection (DexiNed). This algorithm is capable of finding many contours in images. Moreover, the CIELAB color space (LAB) is employed to locate black-colored contours, which may indicate oil spills. The suggested method involves eliminating smaller contours to calculate the area of larger contours. If the contour's area exceeds a certain threshold, it is classified as a spill; otherwise, it is stored in a database for further review. In the experiments, spill sizes of 1m2, 2m2, and 3m2 were established at three separate test locations. The drone was operated at three different heights (5 m, 10 m, and 15 m) to capture the scenes. The results show that efficient detection can be achieved at a height of 10 meters using the DexiNed algorithm. Statistical comparison with other edge detection methods using basic metrics, such as perimage best threshold (OIS = 0.867), fixed contour threshold (ODS = 0.859), and average precision (AP = 0.905), validates the effectiveness of the DexiNed algorithm in generating thin edge maps and identifying oil slicks. © 2023 Lavoisier. All rights reserved.
As a well-known oral and intravenous antifungal, voriconazole (VRN) has an extensive history of usage in the medical field. Solid lipid nanoparticles (SLNs) have been produced to treat ocular fungal keratitis in the eye. A 32Box-behnken design was used to produce a variety of new formulas for hot-melt extrusion. The SLNs were evaluated by entrapment efficiency (EE percent), particle size (PS), polydispersity index (PDI), and zeta potential (ZP). A series of in-vitro and in-vivo studies were carried out on the new formula. The produced vesicles’ EE, PS, PDI, and ZP values were all good. SLNs eye drops were numerically adjusted to include carbopol, a stabilizer, lipids, and a surfactant, among other substances. ZP of -36.5 ± 0.20 m
... Show MoreA general velocity profile for a laminar flow over a flat plate with zero incidence is obtained by employing a new boundary condition to the other available boundary conditions. The general velocity profile is mathematically simple and nearest to the exact solution. Also other related values, boundary layer thickness, displacement thickness, momentum thickness and coefficient of friction are nearest to the exact solution compared with other corresponding values for other researchers.
In this paper, the deterministic and the stochastic models are proposed to study the interaction of the Coronavirus (COVID-19) with host cells inside the human body. In the deterministic model, the value of the basic reproduction number determines the persistence or extinction of the COVID-19. If , one infected cell will transmit the virus to less than one cell, as a result, the person carrying the Coronavirus will get rid of the disease .If the infected cell will be able to infect all cells that contain ACE receptors. The stochastic model proves that if are sufficiently large then maybe give us ultimate disease extinction although , and this facts also proved by computer simulation.
Objective : The study was carried out to construct an initial assessment documentation tool for nursing
recording system in Coronary Care Unit.
Methodology : A descriptive, purposive sample of (65) nurses was selected from CCU of main
teaching hospitals (Al Karama, Al Kindy, Al Kadimia, Al Yarmmok, Baghdad teaching hospital, Ibn
Al Naffis hospital) and Ibn-Al betar hospital in Baghdad city from the 15th of April 2004 to the 15th of
April 2006.
The instrument was constructed and comprised of two sections: section one included the
nurses' demographic characteristic; section two was the initial assessment documentation tool that
contained (2) parts including: General information form and the initial assessment form.
PMMA (Poly methyl methacrylate) is considered one of the most commonly used materials in denture base fabrication due to its ideal properties. Although, a major problem with this resin is the frequent fractures due to heavy chewing forces which lead to early crack and fracture in clinical use. The addition of nanoparticles as filler performed in this study to enhance its selected mechanical properties. The Nano-additive effect investigated in normal circumstances and under a different temperature during water exposure. First, tests applied on the prepared samples at room temperature and then after exposure to water bath at (20, 40, 60) C° respectively. SEM, PSD, EDX were utilized for samples evaluation in this study. Flexural
... Show More