Preferred Language
Articles
/
uRc0Go4BVTCNdQwCZDEd
Deep Learning Approach for Oil Pipeline Leakage Detection Using Image-Based Edge Detection Techniques
...Show More Authors

Natural gas and oil are one of the mainstays of the global economy. However, many issues surround the pipelines that transport these resources, including aging infrastructure, environmental impacts, and vulnerability to sabotage operations. Such issues can result in leakages in these pipelines, requiring significant effort to detect and pinpoint their locations. The objective of this project is to develop and implement a method for detecting oil spills caused by leaking oil pipelines using aerial images captured by a drone equipped with a Raspberry Pi 4. Using the message queuing telemetry transport Internet of Things (MQTT IoT) protocol, the acquired images and the global positioning system (GPS) coordinates of the images' acquisition are sent to the base station. Using deep learning approaches such as holistically-nested edge detection (HED) and extreme inception (Xception) networks, images are analyzed at the base station to identify contours using dense extreme inception networks for edge detection (DexiNed). This algorithm is capable of finding many contours in images. Moreover, the CIELAB color space (LAB) is employed to locate black-colored contours, which may indicate oil spills. The suggested method involves eliminating smaller contours to calculate the area of larger contours. If the contour's area exceeds a certain threshold, it is classified as a spill; otherwise, it is stored in a database for further review. In the experiments, spill sizes of 1m2, 2m2, and 3m2 were established at three separate test locations. The drone was operated at three different heights (5 m, 10 m, and 15 m) to capture the scenes. The results show that efficient detection can be achieved at a height of 10 meters using the DexiNed algorithm. Statistical comparison with other edge detection methods using basic metrics, such as perimage best threshold (OIS = 0.867), fixed contour threshold (ODS = 0.859), and average precision (AP = 0.905), validates the effectiveness of the DexiNed algorithm in generating thin edge maps and identifying oil slicks. © 2023 Lavoisier. All rights reserved.

Scopus Crossref
View Publication
Publication Date
Wed Mar 01 2023
Journal Name
Journal Of Photochemistry And Photobiology A: Chemistry
Multipurpose properties the Z-scheme dimanganese copper oxide/cadmium sulfide nanocomposites for photo- or photoelectro-catalytic, antibacterial applications, and thiamine detection process
...Show More Authors

View Publication
Scopus (58)
Crossref (58)
Scopus Clarivate Crossref
Publication Date
Wed Dec 30 2020
Journal Name
Al-kindy College Medical Journal
A Population-Based Study on Agreement between Actual and Perceived Body Image
...Show More Authors

Background: Obesity tends to appear in modern societies and constitutes a significant public health problem with an increased risk of cardiovascular diseases.

Objective: This study aims to determine the agreement between actual and perceived body image in the general population.

Methods: A descriptive cross-sectional study design was conducted with a sample size of 300. The data were collected from eight major populated areas of Northern district of Karachi Sindh with a period of six months (10th January 2020 to 21st June 2020). The Figure rating questionnaire scale (FRS) was applied to collect the demographic data and perception about body weight. Body mass index (BMI) used for ass

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Robotics And Control (jrc)
Artificial Intelligence Based Deep Bayesian Neural Network (DBNN) Toward Personalized Treatment of Leukemia with Stem Cells
...Show More Authors

The dynamic development of computer and software technology in recent years was accompanied by the expansion and widespread implementation of artificial intelligence (AI) based methods in many aspects of human life. A prominent field where rapid progress was observed are high‐throughput methods in biology that generate big amounts of data that need to be processed and analyzed. Therefore, AI methods are more and more applied in the biomedical field, among others for RNA‐protein binding sites prediction, DNA sequence function prediction, protein‐protein interaction prediction, or biomedical image classification. Stem cells are widely used in biomedical research, e.g., leukemia or other disease studies. Our proposed approach of

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Sun Dec 13 2020
Journal Name
International Journal On Advanced Science, Engineering And Information Technology
Robust Approach of Optimal Control for DC Motor in Robotic Arm System using Matlab Environment
...Show More Authors

Modern automation robotics have replaced many human workers in industrial factories around the globe. The robotic arms are used for several manufacturing applications, and their responses required optimal control. In this paper, a robust approach of optimal position control for a DC motor in the robotic arm system is proposed. The general component of the automation system is first introduced. The mathematical model and the corresponding transfer functions of a DC motor in the robotic arm system are presented.  The investigations of using DC motor in the robotic arm system without controller lead to poor system performance. Therefore, the analysis and design of a Proportional plus Integration plus Divertive (PID) controller is illustrated.

... Show More
View Publication
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Sun Mar 30 2025
Journal Name
Iraqi Journal Of Science
Segmentation of Aerial Images Using Different Clustering Techniques
...Show More Authors

The segmentation of aerial images using different clustering techniques offers valuable insights into interpreting and analyzing such images. By partitioning the images into meaningful regions, clustering techniques help identify and differentiate various objects and areas of interest, facilitating various applications, including urban planning, environmental monitoring, and disaster management. This paper aims to segment color aerial images to provide a means of organizing and understanding the visual information contained within the image for various applications and research purposes. It is also important to look into and compare the basic workings of three popular clustering algorithms: K-Medoids, Fuzzy C-Mean (FCM), and Gaussia

... Show More
View Publication
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Turkish Journal Of Physiotherapy And Rehabilitation
classification coco dataset using machine learning algorithms
...Show More Authors

In this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho

... Show More
Publication Date
Tue Aug 31 2021
Journal Name
Inmateh Agricultural Engineering
DETERMINING THE EFFICIENCY OF A SMART SPRAYING ROBOT FOR CROP PROTECTION USING IMAGE PROCESSING TECHNOLOGY
...Show More Authors

A system was used to detect injuries in plant leaves by combining machine learning and the principles of image processing. A small agricultural robot was implemented for fine spraying by identifying infected leaves using image processing technology with four different forward speeds (35, 46, 63 and 80 cm/s). The results revealed that increasing the speed of the agricultural robot led to a decrease in the mount of supplements spraying and a detection percentage of infected plants. They also revealed a decrease in the percentage of supplements spraying by 46.89, 52.94, 63.07 and 76% with different forward speeds compared to the traditional method.

View Publication Preview PDF
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sat Oct 01 2022
Journal Name
The Egyptian Journal Of Hospital Medicine
Detection of Bacterial Resistance Genes from Neonatal’s Incubators Environment at Selected Sites of Baghdad Hospitals
...Show More Authors

Scopus Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Iraqi Journal Of Physics
Transfocation Technique to Overcome Atmospheric Scintillation Effect on a Laser Detection and Tracking System (LDTS)
...Show More Authors

Atmospheric transmission is disturbed by scintillation, where scintillation caused more beam divergence. In this work target image spot radius was calculated in presence of atmospheric scintillation. The calculation depend on few relevant equation based on atmospheric parameter (for Middle East), tracking range, expansion ratio of applied beam expander's, receiving unit lens F-number, and the laser wavelength besides photodetector parameter. At maximum target range Rmax =20 km, target image radius is at its maximum Rs=0.4 mm. As the range decreases spot radius decreases too, until the range reaches limit (4 km) at which target image spot radius at its minimum value (0.22 mm). Then as the range decreases, spot radius increases due to geom

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 01 2012
Journal Name
International Journal Of Recent Scientific Research
DETECTION OF LTH, FSH AND LH HORMONE LEVEL IN PREGNANT WOMEN INFECTED WITH TOXOPLASMA GONDII
...Show More Authors

Infection with the protozoan parasite Toxoplasma gondii is widely prevalent in humans and animals. Infection with Toxoplasma may associate with miscarriage in many pregnant women due to infection. In this study, the level of lutetropic hormone (LTH), folliclestimulating hormone (FSH) and luteinizing hormone (LH) was measured in pregnant women suffering from toxoplasmosis using mini-VIDAS®technique. Results showed that pregnant women have high concentration of both LTH and FSH hormone(10.80 ± 6.53) ng/ml and (9.51 ± 2.40) μIU/ml respectively, while the concentration of LH hormone was lower than normal(4.49 ± 0.56) μIU/ml. Such finding is to suggest that infection with T. gondii is interfering with these hormones in pregnant women.

View Publication Preview PDF