Natural gas and oil are one of the mainstays of the global economy. However, many issues surround the pipelines that transport these resources, including aging infrastructure, environmental impacts, and vulnerability to sabotage operations. Such issues can result in leakages in these pipelines, requiring significant effort to detect and pinpoint their locations. The objective of this project is to develop and implement a method for detecting oil spills caused by leaking oil pipelines using aerial images captured by a drone equipped with a Raspberry Pi 4. Using the message queuing telemetry transport Internet of Things (MQTT IoT) protocol, the acquired images and the global positioning system (GPS) coordinates of the images' acquisition are sent to the base station. Using deep learning approaches such as holistically-nested edge detection (HED) and extreme inception (Xception) networks, images are analyzed at the base station to identify contours using dense extreme inception networks for edge detection (DexiNed). This algorithm is capable of finding many contours in images. Moreover, the CIELAB color space (LAB) is employed to locate black-colored contours, which may indicate oil spills. The suggested method involves eliminating smaller contours to calculate the area of larger contours. If the contour's area exceeds a certain threshold, it is classified as a spill; otherwise, it is stored in a database for further review. In the experiments, spill sizes of 1m2, 2m2, and 3m2 were established at three separate test locations. The drone was operated at three different heights (5 m, 10 m, and 15 m) to capture the scenes. The results show that efficient detection can be achieved at a height of 10 meters using the DexiNed algorithm. Statistical comparison with other edge detection methods using basic metrics, such as perimage best threshold (OIS = 0.867), fixed contour threshold (ODS = 0.859), and average precision (AP = 0.905), validates the effectiveness of the DexiNed algorithm in generating thin edge maps and identifying oil slicks. © 2023 Lavoisier. All rights reserved.
Autoría: Muwafaq Obayes Khudhair. Localización: Revista iberoamericana de psicología del ejercicio y el deporte. Nº. 6, 2022. Artículo de Revista en Dialnet.
Background: Varicose vein (VV) is a common problem that mostly occurs in legs. This medical condition can influence the quality of life and working condition of nurses. Aim of the study: To estimate the prevalence of lower limbs varicosity and its associated risk factors among nurses. Methods: This a cross-sectional descriptive study was carried out among 100 nurses working Baghdad Teaching Hospital, Surgical Specialties Hospital, and Al- Kidney Teaching Hospital, Baghdad, Iraq from January 1st to May 10th, 2022. The participants were recruited in the study using systematic random sampling. The Occupational Sitting and Physical Activity and Aberdeen Varicose Vein Questionnaires were used for data gathering. Results: The prevalence o
... Show MoreOne of the primary goals of any study involving groundwater is to make an exact assessment of the physical properties of the layers containing the water. One of the most fruitful ways to approach this goal is to conduct a pumping test for the aquifer. To make the most use of groundwater in terms of sustainable water management, this study attempts to assess its hydraulic features relative to the most significant aquifer represented in the Euphrates formation. A pumping test was carried out on 6 wells where each well is accompanied by an observation well. Cooper-Jacob and Theis Recovery methods were used to determine the aquifer transmissivity and storage coefficient. The ranges for permeability, transmissivity, and specific yiel
... Show MoreRock failure during drilling is an important problem to be solved in petroleum technology. one of the most causes of rock failure is shale chemical interaction with drilling fluids. This interaction is changing the shale strength as well as its pore pressure relatively near the wellbore wall. In several oilfields in southern Iraq, drilling through the Tanuma formation is known as the most challenging operation due to its unstable behavior. Understanding the chemical reactions between shale and drilling fluid is determined by examining the features of shale and its behavior with drilling mud. Chemical interactions must be mitigated by the selection of suitable drilling mud with effective chemical additives. This study is describing t
... Show MoreIt is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy i
... Show More