In drilling processes, the rheological properties pointed to the nature of the run-off and the composition of the drilling mud. Drilling mud performance can be assessed for solving the problems of the hole cleaning, fluid management, and hydraulics controls. The rheology factors are typically termed through the following parameters: Yield Point (Yp) and Plastic Viscosity (μp). The relation of (YP/ μp) is used for measuring of levelling for flow. High YP/ μp percentages are responsible for well cuttings transportation through laminar flow. The adequate values of (YP/ μp) are between 0 to 1 for the rheological models which used in drilling. This is what appeared in most of the models that were used in this study. The pressure loss is a gathering of numerous issues for example rheology of mud), flow regime and the well geometry. An artificial neural network (ANN) that used in this effort is an accurate or computational model stimulated by using JMP software. The aim of this study is to find out the effect of rheological models on the hydraulic system and to use the artificial neural network to simulate the parameters that were used as emotional parameters and then find an equation containing the parameters μp, Yp and P Yp/ μp to calculate the pressure losses in a hydraulic system. Data for 7 intermediate casing wells with 12.25" hole size and 95/8" intermediate casing size are taken from the southern Iraq field used for the above purpose. Then compare the result with common equations used to calculate pressure losses in a hydraulic system. Also, we calculate the optimum flow by the maximum impact force method and then offset in Equation obtained by (Joint Marketing Program) JMP software. Finally, the equation that was found to calculate pressure losses instead of using common hydraulic equations with long calculations gave very close results with less calculation.
In this research, the removal of cadmium (Cd) from simulated wastewater was investigated by using a fixed bed bio-electrochemical reactor. The effects of the main controlling factors on the performance of the removal process such as applied cell voltage, initial Cd concentration, pH of the catholyte, and the mesh number of the cathode were investigated. The results showed that the applied cell voltage had the main impact on the removal efficiency of cadmium where increasing the applied voltage led to higher removal efficiency. Meanwhile increasing the applied voltage was found to be given lower current efficiency and higher energy consumption. No significant effect of initial Cd concentration on the removal efficiency of cadmium b
... Show MoreDrastic threat to the natural system is caused by the uncontrolled release of synthetic pollutants, including azo dyes. This study centered on the decolorization and biodegradation of water soluble azo dye reactive blue (RB) in a batch mode sequential anaerobic-aerobic processes. A local sewage treatment plant was the source where activated sludge was collected to be used as non-adapted mixed culture with both free and the alginate immobilized cells for RB biodegradation. Under anaerobic conditions, the free and immobilized mixed cells were proved to completely decolorize 10 mg/ L of RB within 20 and 30 h, respectively. Alginate- immobilized mixed cells, resulted in 88%, 87%, and 87% maximum COD removals with samples con
... Show MoreAbstract
The aim of this paper is to investigate and discuss the mechanisms of corrosion of epoxy coatings used for potable water tanks. Two distinct types of Jotun epoxy coatings: Tankguard 412 contained polyamine cured epoxy and Penguard HB contained polyamide cured epoxy, were tested and studied using the electrochemical impedance spectroscopic (EIS) method. The porosity of epoxy coatings was determined using EIS method. The obtained results showed that the two epoxy coatings have excellent behavior when applied and tested in potable water of Basrah city. Polyamine is more resistance to water corrosion compared to polyamide curing epoxy and has high impedance values. Microscopic inspection after te
... Show MoreIn this work, copper substituted cobalt ferrite nanoparticles with
chemical formula Co1-xCuxFe2O4 (x=0, 0.3, and 0.7), has been
synthesized via hydrothermal preparation method. The structure of
the prepared materials was characterized by X-ray diffraction (XRD).
The (XRD) patterns showed single phase spinel ferrite structure.
Average crystallite size (D), lattice constant (a), and crystal density
(dx) have been calculated from the most intense peak (311).
Comparative standardization also performed using smaller average
particle size (D) on the XRD patterns of as-prepared ferrite samples
in order to select most convenient hydrothermal synthesis conditions
to get ferrite materials with smallest average particl
As one type of heating furnaces, the electric heating furnace (EHF) typically suffers from time delay, non-linearity, time-varying parameters, system uncertainties, and harsh en-vironment of the furnace, which significantly deteriorate the temperature control process of the EHF system. In order to achieve accurate and robust temperature tracking performance, an integration of robust state feedback control (RSFC) and a novel sliding mode-based disturbance observer (SMDO) is proposed in this paper, where modeling errors and external disturbances are lumped as a lumped disturbance. To describe the characteristics of the EHF, by using convection laws, an integrated dynamic model is established and identified as an uncertain nonlinear second ord
... Show MoreIn this research, the removal of cadmium (Cd) from simulated wastewater was investigated by using a fixed bed bio-electrochemical reactor. The effects of the main controlling factors on the performance of the removal process such as applied cell voltage, initial Cd concentration, pH of the catholyte, and the mesh number of the cathode were investigated. The results showed that the applied cell voltage had the main impact on the removal efficiency of cadmium where increasing the applied voltage led to higher removal efficiency. Meanwhile increasing the applied voltage was found to be given lower current efficiency and higher energy consumption. No significant effect of initial Cd concentration on the removal efficie
... Show MoreThe aim of this research is to assess the validity of Detailed Micro-Modeling (DMM) as a numerical model for masonry analysis. To achieve this aim, a set of load-displacement curves obtained based on both numerical simulation and experimental results of clay masonry prisms loaded by a vertical load. The finite element method was implemented in DMM for analysis of the experimental clay masonry prism. The finite element software ABAQUS with implicit solver was used to model and analyze the clay masonry prism subjected to a vertical load. The load-displacement relationship of numerical model was found in good agreement with those drawn from experimental results. Evidence shows that load-displacement curvefound from the finite element m
... Show MoreThe ability of Cr (VI) removal from aqueous solution using date palm fibers (leef) was investigated .The effects of pH, contact time, sorbets concentration and initial metal ions concentration on the biosorption were investigated.
The residual concentration of Cr (VI) in solution was determined colorimetrically using spectrophotometer at wave length 540 nm .The biosorption was pH-dependent, the optimum pH was 7 and adsorption isotherms obtained fitted well with Langmuir isotherms .The Langmuir equation obtained was Ce/Cs = 79.99 Ce-77.39, the correlation factor was 0.908.These results indicate that date palm fibers (leef) has a potential effect for the uptake of Cr (VI) from industrial waste water.
Distributed Denial of Service (DDoS) attacks on Web-based services have grown in both number and sophistication with the rise of advanced wireless technology and modern computing paradigms. Detecting these attacks in the sea of communication packets is very important. There were a lot of DDoS attacks that were directed at the network and transport layers at first. During the past few years, attackers have changed their strategies to try to get into the application layer. The application layer attacks could be more harmful and stealthier because the attack traffic and the normal traffic flows cannot be told apart. Distributed attacks are hard to fight because they can affect real computing resources as well as network bandwidth. DDoS attacks
... Show More