This contribution reports a comprehensive investigation into the structural, electronic and thermal properties of bulk and surface terbium dioxide (TbO2); a material that enjoys wide spectra of catalytic and optical applications. Our calculated lattice dimension of 5.36 Å agrees well with the corresponding experimental value at 5.22 Å. Density of states configuration of the bulk structure exhibits a semiconducting nature. Thermo-mechanical properties of bulk TbO2 were obtained based on the quasi-harmonic approximation formalism. Heat capacities, thermal expansions and bulk modulus of the bulk TbO2 were obtained under a wide range of temperatures and pressures. The dependency of these properties on operational pressure is very evident. Cleaving bulk terbium dioxide affords six distinct terminations. Bader's charge distribution analysis for the bulk and the surfaces portrays an ionic character for Tb-O bonds. In an analogy to the well-established finding pertinent to stoichiometric CeO2 surfaces, the (111):Tb surface appears to be the thermodynamically most stable configuration in the nearness of the lean-limit of the oxygen chemical potential. For the corresponding non-stoichiometric structures, we find that, the (111):O + 1VO surface is the most stable configuration across all values of accessible oxygen chemical potentials. The presence of an oxygen vacant site in this surface is expected to enable potent catalytic-assisted reactions, most notably production of hydrogen from water
Diabetes mellitus type 2 (T2DM) is a metabolic disorder that influences above 450 million individuals around the world. Type 2 diabetes is a lack of insulin due to pancreatic β-cell malfunction and insulin resistance. This study aimed to detect insulin resistance using homeostasis model assessment (HOMA IR) and determined the correlation with glutathione-s-transferase (GST) activity in T2DM and neuropathy patients as a predictor of oxidative stress, which occurs when the oxidation-antioxidant equilibrium is disrupted. Reactive oxygen species causes vascular injury and a series of inflammation. In the present study, the results show there is no significant difference in diabetic patients (DM) and neuropathy patients (NU) versus healthy p
... Show MoreSome metal ions (Mn
+2
, Fe
+2
,Co
+2
,Ni
+2
,Cu
+2
, Cd
+2
and Hg
+2
) complexes of N-acetyl
Tryptophan( AcetrpH) and (2, 2′-bipyridine) (2, 2′-Bipy)have been synthesized and then
characterized on the basis of their FT-IR, UV-Vis spectroscopy, magneticsuscptibity
conductivity measurements and atomic absorption;from the results obtained and the propsed
molecular structure for these complexes as octahedral geometry,the following general formula
has been given for the prepared complexes.
[M
+n
(Acetrp)2(2, 2′-Bipy)].
Where M= Mn
+2
, Fe
+2
,Co
+2
,Ni
+2
,Cu
+2
, Cd
+2
,Hg
+2
(Acetrp)
-=Ligand ion(N-acetyl
An optical spectroscopic study is reported in this article to study the correlation between the supermassive black hole (SMBH) and the star formation rate (SFR) for a sample of Seyfert galaxies type (I and II). The study focused on 45 galaxy of Seyfert 1, in addition to 45 galaxy of Seyfert 2, where these samples have been selected form different survey of Salon Digital Sky Survey (SDSS). The redshift (z) of these objects were between (0.02 – 0.26). The results of Seyfert 1 galaxies shows that there good correlation between the SMBH and the SFR depending on statistical analysis parameter named Spearman’s Rank Correlation in a factor of (ρ=0.609), as well as the Seyfert 2 galaxies results show a good correlation between the SMBH and
... Show MoreBecause of the quick growth of electrical instruments used in noxious gas detection, the importance of gas sensors has increased. X-ray diffraction (XRD) can be used to examine the crystal phase structure of sensing materials, which affects the properties of gas sensing. This contributes to the study of the effect of electrochemical synthesis of titanium dioxide (TiO2) materials with various crystal phase shapes, such as rutile TiO2 (R-TiO2NTs) and anatase TiO2 (A-TiO2NTs). In this work, we have studied the effect of voltage on preparing TiO2 nanotube arrays via the anodization technique for gas sensor applications. The results acquired from XRD, energy dispersion spectro
... Show MoreOilwell cementing operations are crucial for drilling and completion, preserving the well's productive life. However, weak and permeable formations pose a high risk of cement slurry loss, leading to failure. Lightweight cement, like foamed cement, is used to avoid these difficulties. This study is focused on creating a range of foamed slurry densities and examining the effect of gas concentration on their rheological properties. The foaming agent and foam stabilizer are tested, and the optimal concentration is determined to be 2% and 0.12%, respectively, by the weight of the cement.
Furthermore, the construction of samples of foam cement with different densities (0.8, 1.0, 1.2, 1.4, and 1.6) g/cc is performed to f
... Show MoreNanocomposite was prepared using unsaturated polyester (UP) resin as a matrix and graphene nanoparticles as a reinforcement material in six percentage weights (0, 0.1, 0.2, 0.3, 1 and 1.5%). Mechanical, calorimetric and thermal studies were performed on the (UP) resin/graphene nanocomposite. All tests showed a clear improvement of all mechanical properties examined (hardness, flexural strength (F.S), impact strength (I.S) and tensile strength (T.S)) with increasing graphene percentage. In addition, the temperature of glass transition and thermal conductivity of this composite increased with increasing graphene content.
Abstract
This research aims to study and improve the passivating specifications of rubber resistant to vibration. In this paper, seven different rubber recipes were prepared based on mixtures of natural rubber(NR) as an essential part in addition to the synthetic rubber (IIR, BRcis, SBR, CR)with different rates. Mechanical tests such as tensile strength, hardness, friction, resistance to compression, fatigue and creep testing in addition to the rheological test were performed. Furthermore, scanning electron microscopy (SEM)test was used to examine the structure morphology of rubber. After studying and analyzing the results, we found that, recipe containing (BRcis) of 40% from th
... Show MoreThe effect of micro-and nano silica particles (silica SiO2 (100 μm), Fused silica (12nm)) on some mechanical properties of epoxy resin was investigated (Young's modulus, Flexural strength). The micro-and nano composites were prepared by using three steps process with different volume fraction of micro-and nano particles (1, 2, 3, 4, 5, 7, 10, 15, and 20 vol. %). Flexural strength and Young's modulus of nano composites were increased at low volume fraction (max. enhancement at 4 vol.% ). However at higher volume fraction both Young's modulus and flexural strength decrease. Moreover, above, the mechanical properties are enhanced more than that of neat epoxy resin. The flexural strength decreases with increasing the volume fraction of micr
... Show MoreHeterocyclic compounds are employed in many applications, and numerous researchers have created liquid crystals by adding heterocyclic to the structures of these molecules. This work includes the synthesis and characterization of new compounds that contain 5H-thiazolo [4,3-b][1,3,4] thiadiazol united in multiple steps, starting with the synthesis of the aldehyde compound [I] by reaction chloro ethyl acetate with 4-hydroxybenzaldehyde in the presence of ethanol and potassium carbonate, followed by reactions with thiosemicarbazide, mercapto acetic acid in sulphuric acid to produce compound [II] then reflux compound [II] with hydrazine hydrate to product compound [III], after that reaction the later compound with nalkoxybenzaldehyde [IV]n and
... Show More